\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields

  • * Corresponding author

    * Corresponding author 
S. Jitman was supported by the Thailand Research Fund under Research Grant TRG5780065.
Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields are studied. An alternative algorithm for factorizing $x^n-\lambda $ over ${\mathbb{F}_{{q^2}}}$ is given, where $λ$ is a unit in ${\mathbb{F}_{{q^2}}}$. Based on this factorization, the dimensions of the Hermitian hulls of $\lambda $-constacyclic codes of length $n$ over ${\mathbb{F}_{{q^2}}}$ are determined. The characterization and enumeration of constacyclic Hermitian self-dual (resp., complementary dual) codes of length $n$ over ${\mathbb{F}_{{q^2}}}$ are given through their Hermitian hulls. Subsequently, a new family of MDS constacyclic Hermitian self-dual codes over ${\mathbb{F}_{{q^2}}}$ is introduced.

    As a generalization of constacyclic codes, quasi-twisted Hermitian self-dual codes are studied. Using the factorization of $x^n-\lambda $ and the Chinese Remainder Theorem, quasi-twisted codes can be viewed as a product of linear codes of shorter length over some extension fields of ${\mathbb{F}_{{q^2}}}$. Necessary and sufficient conditions for quasi-twisted codes to be Hermitian self-dual are given. The enumeration of such self-dual codes is determined as well.

    Mathematics Subject Classification: Primary: 94B15, 11T06; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  MDS constacyclic Hermitian self-dual codes over $\mathbb{F}_{q^2}$

    $q$ $m$ $i$ Parameters $T$
    $3$ $2$ $1$ $[4,2,3]$ $\{1, 3\}$
    $5$ $1$ $1$ $[6,3,4]$ $\{1, 3, 5\}$
    $7$ $3$ $1$ $[8,4,5]$ $\{1, 3, 5, 7\}$
    $3$ $2$ $[4,2,3]$ $\{1, 5\}$
    $9$ $1$ $1$ $[10,5,6]$ $\{1, 3, 5, 7, 9\}$
    $11$ $2$ $1$ $[12,6,7]$ $\{1, 3, 5, 7, 9, 11\}$
    $2$ $2$ $[6,3,4]$ $\{1, 5, 9\}$
    $13$ $1$ $1$ $[14,7,8]$ $\{1, 3, 5, 7, 9, 11, 13\}$
     | Show Table
    DownLoad: CSV
  • [1] N. Aydin, T. Asamov and T. A. Gulliver, Some open problems on quasi-twisted and related code constructions and good quaternary codes, in Proc. IEEE ISIT' 2007, Nice, France, 2007, 856–860.
    [2] N. AydinI. Siap and D. J. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Crypt., 24 (2001), 313-326.  doi: 10.1023/A:1011283523000.
    [3] G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.
    [4] E. R. Berlekamp, Algebraic Coding Theory McGraw-Hill, New York, 1968.
    [5] B. ChenH. Q. DinhY. Fan and S. Ling, Polyadic constacyclic codes, IEEE Trans. Inf. Theory, 61 (2015), 1217-1231.  doi: 10.1109/TIT.2015.2451656.
    [6] B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231. 
    [7] E. Z. Chen, An explicit construction of 2-generator quasi-twisted codes, IEEE Trans. Inf. Theory, 54 (2008), 5770-5773.  doi: 10.1109/TIT.2008.2006430.
    [8] V. Chepyzhov, A Gilbert-Vashamov bound for quasitwisted codes of rate $\frac1n$, in Proc. Joint Swedish-Russian Int. Workshop Inf. Theory, Mölle, Sweden, 1993,214–218.
    [9] R. Daskalov and P. Hristov, New quasi-twisted degenerate ternary linear codes, IEEE Trans. Inf. Theory, 49 (2003), 2259-2263.  doi: 10.1109/TIT.2003.815798.
    [10] T. A. GulliverM. Harada and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$, Adv. Math. Commun., 1 (2007), 223-238.  doi: 10.3934/amc.2007.1.223.
    [11] T. A. GulliverN. P. Secord and S. A. Mahmoud, A link between quasi-cyclic codes and convolution codes, IEEE Trans. Inf. Theory, 44 (1998), 431-435.  doi: 10.1109/18.651076.
    [12] Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.  doi: 10.1016/j.ffa.2011.08.001.
    [13] Y. JiaS. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 13 (2011), 2243-2251.  doi: 10.1109/TIT.2010.2092415.
    [14] X. KaiX. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.
    [15] T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate $1/2$ IEEE Trans. Inf. Theory 20 (1974), 679.
    [16] A. KetkarA. KlappeneckerS. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.
    [17] G. G. La Guardia On optimal constacyclic codes preprint, arXiv: 1311.2505 doi: 10.1016/j.laa.2016.02.014.
    [18] L. LinH. Liu and B. Chen, Existence conditions for self-orthogonal negacyclic codes over finite fields, Adv. Math. Commun., 9 (2015), 1-7.  doi: 10.3934/amc.2015.9.1.
    [19] S. LingH. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅳ: Repeated roots, Des. Codes Crypt., 38 (2006), 337-361.  doi: 10.1007/s10623-005-1431-7.
    [20] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅰ: Finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.  doi: 10.1109/18.959257.
    [21] S. Ling and P. Solé, Good self-dual quasi-cyclic codes exist, IEEE Trans. Inf. Theory, 49 (2003), 1052-1053.  doi: 10.1109/TIT.2003.809501.
    [22] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅲ: Generator theory, IEEE Trans. Inf. Theory, 51 (2005), 2692-2700.  doi: 10.1109/TIT.2005.850142.
    [23] G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory Springer-Verlag, Berlin, 2006.
    [24] H. Özadamb and F. Özbudak, A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$, Adv. Math. Commun., 3 (2009), 265-271.  doi: 10.3934/amc.2009.3.265.
    [25] E. M. Rains and N. J. A. Sloane, Self-dual codes, in Handbook of Coding Theory, Elsevier, North-Holland, 1998,177–294.
    [26] E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257.  doi: 10.1016/j.ffa.2014.12.008.
    [27] J. P. Serre, A Course in Arithmetic Springer-Verlag, New York, 1973.
    [28] G. Solomon and H. C. A. van Tilborg, A connection between block and convolutional codes, SIAM J. Appl. Math., 37 (1979), 358-369.  doi: 10.1137/0137027.
    [29] Y. Yang and W. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Crypt., 74 (2015), 355-364.  doi: 10.1007/s10623-013-9865-9.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(1830) PDF downloads(240) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return