August  2017, 11(3): 595-613. doi: 10.3934/amc.2017045

Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields

1. 

Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung Campus, Phatthalung 93110, Thailand

2. 

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

3. 

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

* Corresponding author

Received  November 2015 Published  August 2017

Fund Project: S. Jitman was supported by the Thailand Research Fund under Research Grant TRG5780065.

Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields are studied. An alternative algorithm for factorizing $x^n-\lambda $ over ${\mathbb{F}_{{q^2}}}$ is given, where $λ$ is a unit in ${\mathbb{F}_{{q^2}}}$. Based on this factorization, the dimensions of the Hermitian hulls of $\lambda $-constacyclic codes of length $n$ over ${\mathbb{F}_{{q^2}}}$ are determined. The characterization and enumeration of constacyclic Hermitian self-dual (resp., complementary dual) codes of length $n$ over ${\mathbb{F}_{{q^2}}}$ are given through their Hermitian hulls. Subsequently, a new family of MDS constacyclic Hermitian self-dual codes over ${\mathbb{F}_{{q^2}}}$ is introduced.

As a generalization of constacyclic codes, quasi-twisted Hermitian self-dual codes are studied. Using the factorization of $x^n-\lambda $ and the Chinese Remainder Theorem, quasi-twisted codes can be viewed as a product of linear codes of shorter length over some extension fields of ${\mathbb{F}_{{q^2}}}$. Necessary and sufficient conditions for quasi-twisted codes to be Hermitian self-dual are given. The enumeration of such self-dual codes is determined as well.

Citation: Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045
References:
[1]

N. Aydin, T. Asamov and T. A. Gulliver, Some open problems on quasi-twisted and related code constructions and good quaternary codes, in Proc. IEEE ISIT' 2007, Nice, France, 2007, 856–860. Google Scholar

[2]

N. AydinI. Siap and D. J. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Crypt., 24 (2001), 313-326.  doi: 10.1023/A:1011283523000.  Google Scholar

[3]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.  Google Scholar

[4]

E. R. Berlekamp, Algebraic Coding Theory McGraw-Hill, New York, 1968.  Google Scholar

[5]

B. ChenH. Q. DinhY. Fan and S. Ling, Polyadic constacyclic codes, IEEE Trans. Inf. Theory, 61 (2015), 1217-1231.  doi: 10.1109/TIT.2015.2451656.  Google Scholar

[6]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.   Google Scholar

[7]

E. Z. Chen, An explicit construction of 2-generator quasi-twisted codes, IEEE Trans. Inf. Theory, 54 (2008), 5770-5773.  doi: 10.1109/TIT.2008.2006430.  Google Scholar

[8]

V. Chepyzhov, A Gilbert-Vashamov bound for quasitwisted codes of rate $\frac1n$, in Proc. Joint Swedish-Russian Int. Workshop Inf. Theory, Mölle, Sweden, 1993,214–218. Google Scholar

[9]

R. Daskalov and P. Hristov, New quasi-twisted degenerate ternary linear codes, IEEE Trans. Inf. Theory, 49 (2003), 2259-2263.  doi: 10.1109/TIT.2003.815798.  Google Scholar

[10]

T. A. GulliverM. Harada and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$, Adv. Math. Commun., 1 (2007), 223-238.  doi: 10.3934/amc.2007.1.223.  Google Scholar

[11]

T. A. GulliverN. P. Secord and S. A. Mahmoud, A link between quasi-cyclic codes and convolution codes, IEEE Trans. Inf. Theory, 44 (1998), 431-435.  doi: 10.1109/18.651076.  Google Scholar

[12]

Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.  doi: 10.1016/j.ffa.2011.08.001.  Google Scholar

[13]

Y. JiaS. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 13 (2011), 2243-2251.  doi: 10.1109/TIT.2010.2092415.  Google Scholar

[14]

X. KaiX. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[15]

T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate $1/2$ IEEE Trans. Inf. Theory 20 (1974), 679.  Google Scholar

[16]

A. KetkarA. KlappeneckerS. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.  Google Scholar

[17]

G. G. La Guardia On optimal constacyclic codes preprint, arXiv: 1311.2505 doi: 10.1016/j.laa.2016.02.014.  Google Scholar

[18]

L. LinH. Liu and B. Chen, Existence conditions for self-orthogonal negacyclic codes over finite fields, Adv. Math. Commun., 9 (2015), 1-7.  doi: 10.3934/amc.2015.9.1.  Google Scholar

[19]

S. LingH. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅳ: Repeated roots, Des. Codes Crypt., 38 (2006), 337-361.  doi: 10.1007/s10623-005-1431-7.  Google Scholar

[20]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅰ: Finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.  doi: 10.1109/18.959257.  Google Scholar

[21]

S. Ling and P. Solé, Good self-dual quasi-cyclic codes exist, IEEE Trans. Inf. Theory, 49 (2003), 1052-1053.  doi: 10.1109/TIT.2003.809501.  Google Scholar

[22]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅲ: Generator theory, IEEE Trans. Inf. Theory, 51 (2005), 2692-2700.  doi: 10.1109/TIT.2005.850142.  Google Scholar

[23]

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory Springer-Verlag, Berlin, 2006.  Google Scholar

[24]

H. Özadamb and F. Özbudak, A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$, Adv. Math. Commun., 3 (2009), 265-271.  doi: 10.3934/amc.2009.3.265.  Google Scholar

[25]

E. M. Rains and N. J. A. Sloane, Self-dual codes, in Handbook of Coding Theory, Elsevier, North-Holland, 1998,177–294.  Google Scholar

[26]

E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257.  doi: 10.1016/j.ffa.2014.12.008.  Google Scholar

[27]

J. P. Serre, A Course in Arithmetic Springer-Verlag, New York, 1973.  Google Scholar

[28]

G. Solomon and H. C. A. van Tilborg, A connection between block and convolutional codes, SIAM J. Appl. Math., 37 (1979), 358-369.  doi: 10.1137/0137027.  Google Scholar

[29]

Y. Yang and W. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Crypt., 74 (2015), 355-364.  doi: 10.1007/s10623-013-9865-9.  Google Scholar

show all references

References:
[1]

N. Aydin, T. Asamov and T. A. Gulliver, Some open problems on quasi-twisted and related code constructions and good quaternary codes, in Proc. IEEE ISIT' 2007, Nice, France, 2007, 856–860. Google Scholar

[2]

N. AydinI. Siap and D. J. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Crypt., 24 (2001), 313-326.  doi: 10.1023/A:1011283523000.  Google Scholar

[3]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.  Google Scholar

[4]

E. R. Berlekamp, Algebraic Coding Theory McGraw-Hill, New York, 1968.  Google Scholar

[5]

B. ChenH. Q. DinhY. Fan and S. Ling, Polyadic constacyclic codes, IEEE Trans. Inf. Theory, 61 (2015), 1217-1231.  doi: 10.1109/TIT.2015.2451656.  Google Scholar

[6]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.   Google Scholar

[7]

E. Z. Chen, An explicit construction of 2-generator quasi-twisted codes, IEEE Trans. Inf. Theory, 54 (2008), 5770-5773.  doi: 10.1109/TIT.2008.2006430.  Google Scholar

[8]

V. Chepyzhov, A Gilbert-Vashamov bound for quasitwisted codes of rate $\frac1n$, in Proc. Joint Swedish-Russian Int. Workshop Inf. Theory, Mölle, Sweden, 1993,214–218. Google Scholar

[9]

R. Daskalov and P. Hristov, New quasi-twisted degenerate ternary linear codes, IEEE Trans. Inf. Theory, 49 (2003), 2259-2263.  doi: 10.1109/TIT.2003.815798.  Google Scholar

[10]

T. A. GulliverM. Harada and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$, Adv. Math. Commun., 1 (2007), 223-238.  doi: 10.3934/amc.2007.1.223.  Google Scholar

[11]

T. A. GulliverN. P. Secord and S. A. Mahmoud, A link between quasi-cyclic codes and convolution codes, IEEE Trans. Inf. Theory, 44 (1998), 431-435.  doi: 10.1109/18.651076.  Google Scholar

[12]

Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.  doi: 10.1016/j.ffa.2011.08.001.  Google Scholar

[13]

Y. JiaS. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 13 (2011), 2243-2251.  doi: 10.1109/TIT.2010.2092415.  Google Scholar

[14]

X. KaiX. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.  Google Scholar

[15]

T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate $1/2$ IEEE Trans. Inf. Theory 20 (1974), 679.  Google Scholar

[16]

A. KetkarA. KlappeneckerS. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.  Google Scholar

[17]

G. G. La Guardia On optimal constacyclic codes preprint, arXiv: 1311.2505 doi: 10.1016/j.laa.2016.02.014.  Google Scholar

[18]

L. LinH. Liu and B. Chen, Existence conditions for self-orthogonal negacyclic codes over finite fields, Adv. Math. Commun., 9 (2015), 1-7.  doi: 10.3934/amc.2015.9.1.  Google Scholar

[19]

S. LingH. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅳ: Repeated roots, Des. Codes Crypt., 38 (2006), 337-361.  doi: 10.1007/s10623-005-1431-7.  Google Scholar

[20]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅰ: Finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.  doi: 10.1109/18.959257.  Google Scholar

[21]

S. Ling and P. Solé, Good self-dual quasi-cyclic codes exist, IEEE Trans. Inf. Theory, 49 (2003), 1052-1053.  doi: 10.1109/TIT.2003.809501.  Google Scholar

[22]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅲ: Generator theory, IEEE Trans. Inf. Theory, 51 (2005), 2692-2700.  doi: 10.1109/TIT.2005.850142.  Google Scholar

[23]

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory Springer-Verlag, Berlin, 2006.  Google Scholar

[24]

H. Özadamb and F. Özbudak, A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$, Adv. Math. Commun., 3 (2009), 265-271.  doi: 10.3934/amc.2009.3.265.  Google Scholar

[25]

E. M. Rains and N. J. A. Sloane, Self-dual codes, in Handbook of Coding Theory, Elsevier, North-Holland, 1998,177–294.  Google Scholar

[26]

E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257.  doi: 10.1016/j.ffa.2014.12.008.  Google Scholar

[27]

J. P. Serre, A Course in Arithmetic Springer-Verlag, New York, 1973.  Google Scholar

[28]

G. Solomon and H. C. A. van Tilborg, A connection between block and convolutional codes, SIAM J. Appl. Math., 37 (1979), 358-369.  doi: 10.1137/0137027.  Google Scholar

[29]

Y. Yang and W. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Crypt., 74 (2015), 355-364.  doi: 10.1007/s10623-013-9865-9.  Google Scholar

Table 1.  MDS constacyclic Hermitian self-dual codes over $\mathbb{F}_{q^2}$
$q$ $m$ $i$ Parameters $T$
$3$ $2$ $1$ $[4,2,3]$ $\{1, 3\}$
$5$ $1$ $1$ $[6,3,4]$ $\{1, 3, 5\}$
$7$ $3$ $1$ $[8,4,5]$ $\{1, 3, 5, 7\}$
$3$ $2$ $[4,2,3]$ $\{1, 5\}$
$9$ $1$ $1$ $[10,5,6]$ $\{1, 3, 5, 7, 9\}$
$11$ $2$ $1$ $[12,6,7]$ $\{1, 3, 5, 7, 9, 11\}$
$2$ $2$ $[6,3,4]$ $\{1, 5, 9\}$
$13$ $1$ $1$ $[14,7,8]$ $\{1, 3, 5, 7, 9, 11, 13\}$
$q$ $m$ $i$ Parameters $T$
$3$ $2$ $1$ $[4,2,3]$ $\{1, 3\}$
$5$ $1$ $1$ $[6,3,4]$ $\{1, 3, 5\}$
$7$ $3$ $1$ $[8,4,5]$ $\{1, 3, 5, 7\}$
$3$ $2$ $[4,2,3]$ $\{1, 5\}$
$9$ $1$ $1$ $[10,5,6]$ $\{1, 3, 5, 7, 9\}$
$11$ $2$ $1$ $[12,6,7]$ $\{1, 3, 5, 7, 9, 11\}$
$2$ $2$ $[6,3,4]$ $\{1, 5, 9\}$
$13$ $1$ $1$ $[14,7,8]$ $\{1, 3, 5, 7, 9, 11, 13\}$
[1]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[2]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[3]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[4]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[5]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[6]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[7]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[8]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[9]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[10]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[11]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[12]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[13]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[14]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[15]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[16]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[17]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[18]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[19]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[20]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (92)
  • HTML views (59)
  • Cited by (2)

[Back to Top]