-
Previous Article
Self-dual codes with an automorphism of order 13
- AMC Home
- This Issue
-
Next Article
Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields
Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom |
Let $S$ be a unital ring, $S[t;\sigma,\delta]$ a skew polynomial ring where $\sigma$ is an injective endomorphism and $\delta$ a left $\sigma$-derivation, and suppose $f\in S[t;\sigma,\delta]$ has degree $m$ and an invertible leading coefficient. Using right division by $f$ to define the multiplication, we obtain unital nonassociative algebras $S_f$ on the set of skew polynomials in $S[t;\sigma,\delta]$ of degree less than $m$. We study the structure of these algebras.
When $S$ is a Galois ring and $f$ base irreducible, these algebras yield families of finite unital nonassociative rings $A$, whose set of (left or right) zero divisors has the form $pA$ for some prime $p$.
For reducible $f$, the $S_f$ can be employed both to design linear $(f,\sigma,\delta)$-codes over unital rings and to study their behaviour.
References:
[1] |
Y. Alkhamees,
The group of automorphisms of finite chain rings, Arab Gulf J. Scient. Res., 8 (1990), 17-28.
|
[2] |
Y. Alkhamees,
The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42 (1991), 387-391.
doi: 10.1093/qmath/42.1.387. |
[3] |
A. Batoul, K. Guenda and T. A. Gulliver,
On self-dual cyclic codes over finite chain rings, Des. Codes Crypt., 70 (2014), 347-358.
doi: 10.1007/s10623-012-9696-0. |
[4] |
M. Bhaintwal,
Skew quasi-cyclic codes over Galois rings, Des. Codes Crypt., 62 (2012), 85-101.
doi: 10.1007/s10623-011-9494-0. |
[5] |
D. Boucher, W. Geiselmann and F. Ulmer,
Skew-cyclic codes, AAECC, 18 (2007), 370-389.
doi: 10.1007/s00200-007-0043-z. |
[6] |
D. Boucher, P. Solé and F. Ulmer,
Skew-constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273. |
[7] |
D. Boucher and F. Ulmer,
Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014), 405-431.
doi: 10.1007/s10623-012-9704-4. |
[8] |
M. Boulagouaz and A. Leroy,
$(σ, δ)$-codes, Adv. Math. Commun., 7 (2013), 463-474.
doi: 10.3934/amc.2013.7.463. |
[9] | |
[10] |
Y. Cao,
On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.
doi: 10.1016/j.ffa.2013.07.001. |
[11] |
P. M. Cohn,
Skew Fields. Theory of General Division Rings Cambridge Univ. Press, Cambridge, 1995.
doi: 10.1017/CBO9781139087193. |
[12] |
J. Ducoat and F. Oggier,
Lattice encoding of cyclic codes from skew polynomial rings in Proc. 4th Int Castle Meet. Coding Theory Appl. Palmela, 2014. |
[13] |
J. Ducoat and F. Oggier,
On skew polynomial codes and lattices from quotients of cyclic division algebras, Adv. Math. Commun., 10 (2016), 79-94.
doi: 10.3934/amc.2016.10.79. |
[14] |
C. Feng, R. W. Nobrega, F. R. Kschischang and D. Silva,
Communication over finite-chain-ring matrix channels, IEEE Trans. Inf. Theory, 60 (2014), 5899-5917.
doi: 10.1109/TIT.2014.2346079. |
[15] |
N. Fogarty and H. Gluesing-Luerssen,
A circulant approach to skew-constacyclic codes, Finite Fields Appl., 35 (2015), 92-114.
doi: 10.1016/j.ffa.2015.03.008. |
[16] |
J. Gao and Q. Kong,
Qiong 1-generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\dots+u^{s-1}\mathbb{F}_{p^m}$, J. Franklin Inst., 350 (2013), 3260-3276.
doi: 10.1016/j.jfranklin.2013.08.001. |
[17] |
M. Giesbrecht,
Factoring in skew-polynomial rings over finite fields, J. Symb. Comput., 26 (1998), 463-486.
doi: 10.1006/jsco.1998.0224. |
[18] |
M. Giesbrecht and Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb F_q(t)$, Proc.
2003 Int. Symp. Symb. Alg. Comp. , ACM, New York, 2003,127–134.
doi: 10.1145/860854.860888. |
[19] |
J. Gómez-Torrecillas,
Basic module theory over non-commutative rings with computational aspects of operator algebras in Algebraic and Algorithmic Aspects of Differential and Integral Operators Springer, Berlin, 2012, 23-82.
doi: 10.1007/978-3-642-54479-8_2. |
[20] |
J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro,
Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult preprint, arXiv: 1505.07252 |
[21] |
S. González, V. T. Markov, C. Martíınez, A. A. Nechaev and I. F. Rúa, Nonassociative Galois
rings (in Russian), Diskret. Mat. , 14 (2002), 117–132; translation in Discr. Math. Appl. , 12
(2002), 519–606. |
[22] |
S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa, On cyclic topassociative generalized Galois rings, in Finite Fields and Applications, Springer, Berlin, 2004,
25–39.
doi: 10.1007/978-3-540-24633-6_3. |
[23] |
S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa,
Cyclic generalized Galois rings, Comm. Algebra, 33 (2005), 4467-4478.
doi: 10.1080/00927870500274796. |
[24] |
S. González, C. Martínez, I. F. Rúa, V. T. Markov and A. A. Nechaev,
Coordinate sets of generalized Galois rings, J. Algebra Appl., 3 (2004), 31-48.
doi: 10.1142/S0219498804000678. |
[25] |
N. Jacobson,
Finite-Dimensional Division Algebras over Fields Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-02429-0. |
[26] |
S. Jitman, S. Ling and P. Udomkavanich,
Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63.
doi: 10.3934/amc.2012.6.39. |
[27] |
B. Kong, X. Zheng and H. Ma,
The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 338 (2015), 256-261.
doi: 10.1016/j.disc.2014.09.013. |
[28] |
M. Lavrauw and J. Sheekey,
Semifields from skew polynomial rings, Adv. Geom., 13 (2013), 583-604.
doi: 10.1515/advgeom-2013-0003. |
[29] |
A. Leroy,
Noncommutative polynomial maps J. Algebra Appl. 11 (2012), 16.
doi: 10.1142/S0219498812500764. |
[30] |
X. Liu and H. Liu,
LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1-19.
doi: 10.1016/j.ffa.2015.01.004. |
[31] |
B. McDonald,
Finite Rings with Identity Marcel Dekker Inc. , New York, 1974. |
[32] |
F. Oggier and B. A. Sethuraman,
Quotients of orders in cyclic algebras and space-time codes, Adv. Math. Commun., 7 (2013), 441-461.
doi: 10.3934/amc.2013.7.441. |
[33] |
J.-C. Petit,
Sur certains quasi-corps généralisant un type d'anneau-quotient, Sémin. Dubriel. Algébre Th. Nombr., 20 (1966), 1-18.
|
[34] |
S. Pumplün,
A note on linear codes and nonassociative algebras obtained from skew polynomial rings preprint, arXiv: 1504.00190 |
[35] |
S. Pumplün,
How to obtain lattices from $(f, σ, δ)$-codes via a generalization of Construction A preprint, arXiv: 1607.03787 |
[36] |
S. Pumplün,
Quotients of orders in algebras obtained from skew polynomials and possible applications preprint, arXiv: 1609.04201 |
[37] |
S. Pumplün,
Tensor products of nonassociative cyclic algebras, J. Algebra, 451 (2016), 145-165.
doi: 10.1016/j.jalgebra.2015.12.007. |
[38] |
S. Pumplün and A. Steele,
Classes of nonassociative algebras carrying maps of degree $n$ with interesting properties available at http://agt2.cie.uma.es/~loos/jordan/archive/semimult/semimult.pdf |
[39] |
S. Pumplün and A. Steele,
Fast-decodable MIDO codes from nonassociative algebras, Int. J. Inf. Coding Theory, 3 (2015), 15-38.
doi: 10.1504/IJICOT.2015.068695. |
[40] |
S. Pumplün and A. Steele,
The nonassociative algebras used to build fast-decodable space-time block codes, Adv. Math. Commun., 9 (2015), 449-469.
doi: 10.3934/amc.2015.9.449. |
[41] |
L. Rónyai,
Factoring polynomials over finite fields, J. Algorithms, 9 (1988), 391-400.
doi: 10.1016/0196-6774(88)90029-6. |
[42] |
R. Sandler,
Autotopism groups of some finite non-associative algebras, Amer. J. Math., 84 (1962), 239-264.
doi: 10.2307/2372761. |
[43] |
R. D. Schafer,
An Introduction to Nonassociative Algebras Dover Publ. Inc. , New York, 1995. |
[44] |
M. F. Singer,
Testing reducibility of linear differential operators: a group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104.
doi: 10.1007/BF01191378. |
[45] |
A. Steele,
Some New Classes of Algebras Ph. D thesis, Univ. Nottingham, 2013. |
[46] |
A. Steele,
Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387.
doi: 10.1007/s11856-014-0021-7. |
[47] |
A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and nonassociative cyclic algebras, Inf. Theory Workshop (ITW), IEEE, 2012,192–196.
doi: 10.1007/s11856-014-0021-7. |
[48] |
E. A. Whelan,
A note on finite local rings, Rocky Mount. J. Math., 22 (1992), 757-759.
doi: 10.1216/rmjm/1181072765. |
show all references
References:
[1] |
Y. Alkhamees,
The group of automorphisms of finite chain rings, Arab Gulf J. Scient. Res., 8 (1990), 17-28.
|
[2] |
Y. Alkhamees,
The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42 (1991), 387-391.
doi: 10.1093/qmath/42.1.387. |
[3] |
A. Batoul, K. Guenda and T. A. Gulliver,
On self-dual cyclic codes over finite chain rings, Des. Codes Crypt., 70 (2014), 347-358.
doi: 10.1007/s10623-012-9696-0. |
[4] |
M. Bhaintwal,
Skew quasi-cyclic codes over Galois rings, Des. Codes Crypt., 62 (2012), 85-101.
doi: 10.1007/s10623-011-9494-0. |
[5] |
D. Boucher, W. Geiselmann and F. Ulmer,
Skew-cyclic codes, AAECC, 18 (2007), 370-389.
doi: 10.1007/s00200-007-0043-z. |
[6] |
D. Boucher, P. Solé and F. Ulmer,
Skew-constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273. |
[7] |
D. Boucher and F. Ulmer,
Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014), 405-431.
doi: 10.1007/s10623-012-9704-4. |
[8] |
M. Boulagouaz and A. Leroy,
$(σ, δ)$-codes, Adv. Math. Commun., 7 (2013), 463-474.
doi: 10.3934/amc.2013.7.463. |
[9] | |
[10] |
Y. Cao,
On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.
doi: 10.1016/j.ffa.2013.07.001. |
[11] |
P. M. Cohn,
Skew Fields. Theory of General Division Rings Cambridge Univ. Press, Cambridge, 1995.
doi: 10.1017/CBO9781139087193. |
[12] |
J. Ducoat and F. Oggier,
Lattice encoding of cyclic codes from skew polynomial rings in Proc. 4th Int Castle Meet. Coding Theory Appl. Palmela, 2014. |
[13] |
J. Ducoat and F. Oggier,
On skew polynomial codes and lattices from quotients of cyclic division algebras, Adv. Math. Commun., 10 (2016), 79-94.
doi: 10.3934/amc.2016.10.79. |
[14] |
C. Feng, R. W. Nobrega, F. R. Kschischang and D. Silva,
Communication over finite-chain-ring matrix channels, IEEE Trans. Inf. Theory, 60 (2014), 5899-5917.
doi: 10.1109/TIT.2014.2346079. |
[15] |
N. Fogarty and H. Gluesing-Luerssen,
A circulant approach to skew-constacyclic codes, Finite Fields Appl., 35 (2015), 92-114.
doi: 10.1016/j.ffa.2015.03.008. |
[16] |
J. Gao and Q. Kong,
Qiong 1-generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\dots+u^{s-1}\mathbb{F}_{p^m}$, J. Franklin Inst., 350 (2013), 3260-3276.
doi: 10.1016/j.jfranklin.2013.08.001. |
[17] |
M. Giesbrecht,
Factoring in skew-polynomial rings over finite fields, J. Symb. Comput., 26 (1998), 463-486.
doi: 10.1006/jsco.1998.0224. |
[18] |
M. Giesbrecht and Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb F_q(t)$, Proc.
2003 Int. Symp. Symb. Alg. Comp. , ACM, New York, 2003,127–134.
doi: 10.1145/860854.860888. |
[19] |
J. Gómez-Torrecillas,
Basic module theory over non-commutative rings with computational aspects of operator algebras in Algebraic and Algorithmic Aspects of Differential and Integral Operators Springer, Berlin, 2012, 23-82.
doi: 10.1007/978-3-642-54479-8_2. |
[20] |
J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro,
Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult preprint, arXiv: 1505.07252 |
[21] |
S. González, V. T. Markov, C. Martíınez, A. A. Nechaev and I. F. Rúa, Nonassociative Galois
rings (in Russian), Diskret. Mat. , 14 (2002), 117–132; translation in Discr. Math. Appl. , 12
(2002), 519–606. |
[22] |
S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa, On cyclic topassociative generalized Galois rings, in Finite Fields and Applications, Springer, Berlin, 2004,
25–39.
doi: 10.1007/978-3-540-24633-6_3. |
[23] |
S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa,
Cyclic generalized Galois rings, Comm. Algebra, 33 (2005), 4467-4478.
doi: 10.1080/00927870500274796. |
[24] |
S. González, C. Martínez, I. F. Rúa, V. T. Markov and A. A. Nechaev,
Coordinate sets of generalized Galois rings, J. Algebra Appl., 3 (2004), 31-48.
doi: 10.1142/S0219498804000678. |
[25] |
N. Jacobson,
Finite-Dimensional Division Algebras over Fields Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-02429-0. |
[26] |
S. Jitman, S. Ling and P. Udomkavanich,
Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63.
doi: 10.3934/amc.2012.6.39. |
[27] |
B. Kong, X. Zheng and H. Ma,
The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 338 (2015), 256-261.
doi: 10.1016/j.disc.2014.09.013. |
[28] |
M. Lavrauw and J. Sheekey,
Semifields from skew polynomial rings, Adv. Geom., 13 (2013), 583-604.
doi: 10.1515/advgeom-2013-0003. |
[29] |
A. Leroy,
Noncommutative polynomial maps J. Algebra Appl. 11 (2012), 16.
doi: 10.1142/S0219498812500764. |
[30] |
X. Liu and H. Liu,
LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1-19.
doi: 10.1016/j.ffa.2015.01.004. |
[31] |
B. McDonald,
Finite Rings with Identity Marcel Dekker Inc. , New York, 1974. |
[32] |
F. Oggier and B. A. Sethuraman,
Quotients of orders in cyclic algebras and space-time codes, Adv. Math. Commun., 7 (2013), 441-461.
doi: 10.3934/amc.2013.7.441. |
[33] |
J.-C. Petit,
Sur certains quasi-corps généralisant un type d'anneau-quotient, Sémin. Dubriel. Algébre Th. Nombr., 20 (1966), 1-18.
|
[34] |
S. Pumplün,
A note on linear codes and nonassociative algebras obtained from skew polynomial rings preprint, arXiv: 1504.00190 |
[35] |
S. Pumplün,
How to obtain lattices from $(f, σ, δ)$-codes via a generalization of Construction A preprint, arXiv: 1607.03787 |
[36] |
S. Pumplün,
Quotients of orders in algebras obtained from skew polynomials and possible applications preprint, arXiv: 1609.04201 |
[37] |
S. Pumplün,
Tensor products of nonassociative cyclic algebras, J. Algebra, 451 (2016), 145-165.
doi: 10.1016/j.jalgebra.2015.12.007. |
[38] |
S. Pumplün and A. Steele,
Classes of nonassociative algebras carrying maps of degree $n$ with interesting properties available at http://agt2.cie.uma.es/~loos/jordan/archive/semimult/semimult.pdf |
[39] |
S. Pumplün and A. Steele,
Fast-decodable MIDO codes from nonassociative algebras, Int. J. Inf. Coding Theory, 3 (2015), 15-38.
doi: 10.1504/IJICOT.2015.068695. |
[40] |
S. Pumplün and A. Steele,
The nonassociative algebras used to build fast-decodable space-time block codes, Adv. Math. Commun., 9 (2015), 449-469.
doi: 10.3934/amc.2015.9.449. |
[41] |
L. Rónyai,
Factoring polynomials over finite fields, J. Algorithms, 9 (1988), 391-400.
doi: 10.1016/0196-6774(88)90029-6. |
[42] |
R. Sandler,
Autotopism groups of some finite non-associative algebras, Amer. J. Math., 84 (1962), 239-264.
doi: 10.2307/2372761. |
[43] |
R. D. Schafer,
An Introduction to Nonassociative Algebras Dover Publ. Inc. , New York, 1995. |
[44] |
M. F. Singer,
Testing reducibility of linear differential operators: a group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104.
doi: 10.1007/BF01191378. |
[45] |
A. Steele,
Some New Classes of Algebras Ph. D thesis, Univ. Nottingham, 2013. |
[46] |
A. Steele,
Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387.
doi: 10.1007/s11856-014-0021-7. |
[47] |
A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and nonassociative cyclic algebras, Inf. Theory Workshop (ITW), IEEE, 2012,192–196.
doi: 10.1007/s11856-014-0021-7. |
[48] |
E. A. Whelan,
A note on finite local rings, Rocky Mount. J. Math., 22 (1992), 757-759.
doi: 10.1216/rmjm/1181072765. |
[1] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[2] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[3] |
Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039 |
[4] |
Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2020, 14 (3) : 455-466. doi: 10.3934/amc.2020028 |
[5] |
Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 |
[6] |
Nuh Aydin, Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Esengül Saltürk. Skew constacyclic codes over the local Frobenius non-chain rings of order 16. Advances in Mathematics of Communications, 2020, 14 (1) : 53-67. doi: 10.3934/amc.2020005 |
[7] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
[8] |
Ram Krishna Verma, Om Prakash, Ashutosh Singh, Habibul Islam. New quantum codes from skew constacyclic codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021028 |
[9] |
Ranya Djihad Boulanouar, Aicha Batoul, Delphine Boucher. An overview on skew constacyclic codes and their subclass of LCD codes. Advances in Mathematics of Communications, 2021, 15 (4) : 611-632. doi: 10.3934/amc.2020085 |
[10] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[11] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[12] |
Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2022, 16 (1) : 17-35. doi: 10.3934/amc.2020097 |
[13] |
Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175 |
[14] |
Gianira N. Alfarano, Anina Gruica, Julia Lieb, Joachim Rosenthal. Convolutional codes over finite chain rings, MDP codes and their characterization. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022028 |
[15] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[16] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[17] |
Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55 |
[18] |
Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313 |
[19] |
Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021056 |
[20] |
Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]