August  2017, 11(3): 615-634. doi: 10.3934/amc.2017046

Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

Received  January 2016 Published  August 2017

Let $S$ be a unital ring, $S[t;\sigma,\delta]$ a skew polynomial ring where $\sigma$ is an injective endomorphism and $\delta$ a left $\sigma$-derivation, and suppose $f\in S[t;\sigma,\delta]$ has degree $m$ and an invertible leading coefficient. Using right division by $f$ to define the multiplication, we obtain unital nonassociative algebras $S_f$ on the set of skew polynomials in $S[t;\sigma,\delta]$ of degree less than $m$. We study the structure of these algebras.

When $S$ is a Galois ring and $f$ base irreducible, these algebras yield families of finite unital nonassociative rings $A$, whose set of (left or right) zero divisors has the form $pA$ for some prime $p$.

For reducible $f$, the $S_f$ can be employed both to design linear $(f,\sigma,\delta)$-codes over unital rings and to study their behaviour.

Citation: Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046
References:
[1]

Y. Alkhamees, The group of automorphisms of finite chain rings, Arab Gulf J. Scient. Res., 8 (1990), 17-28. Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42 (1991), 387-391. doi: 10.1093/qmath/42.1.387. Google Scholar

[3]

A. BatoulK. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings, Des. Codes Crypt., 70 (2014), 347-358. doi: 10.1007/s10623-012-9696-0. Google Scholar

[4]

M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Crypt., 62 (2012), 85-101. doi: 10.1007/s10623-011-9494-0. Google Scholar

[5]

D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, AAECC, 18 (2007), 370-389. doi: 10.1007/s00200-007-0043-z. Google Scholar

[6]

D. BoucherP. Solé and F. Ulmer, Skew-constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292. doi: 10.3934/amc.2008.2.273. Google Scholar

[7]

D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014), 405-431. doi: 10.1007/s10623-012-9704-4. Google Scholar

[8]

M. Boulagouaz and A. Leroy, $(σ, δ)$-codes, Adv. Math. Commun., 7 (2013), 463-474. doi: 10.3934/amc.2013.7.463. Google Scholar

[9]

C. Brown, Ph. D thesis, Univ. Nottingham, in preparation.Google Scholar

[10]

Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135. doi: 10.1016/j.ffa.2013.07.001. Google Scholar

[11]

P. M. Cohn, Skew Fields. Theory of General Division Rings Cambridge Univ. Press, Cambridge, 1995. doi: 10.1017/CBO9781139087193. Google Scholar

[12]

J. Ducoat and F. Oggier, Lattice encoding of cyclic codes from skew polynomial rings in Proc. 4th Int Castle Meet. Coding Theory Appl. Palmela, 2014.Google Scholar

[13]

J. Ducoat and F. Oggier, On skew polynomial codes and lattices from quotients of cyclic division algebras, Adv. Math. Commun., 10 (2016), 79-94. doi: 10.3934/amc.2016.10.79. Google Scholar

[14]

C. FengR. W. NobregaF. R. Kschischang and D. Silva, Communication over finite-chain-ring matrix channels, IEEE Trans. Inf. Theory, 60 (2014), 5899-5917. doi: 10.1109/TIT.2014.2346079. Google Scholar

[15]

N. Fogarty and H. Gluesing-Luerssen, A circulant approach to skew-constacyclic codes, Finite Fields Appl., 35 (2015), 92-114. doi: 10.1016/j.ffa.2015.03.008. Google Scholar

[16]

J. Gao and Q. Kong, Qiong 1-generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\dots+u^{s-1}\mathbb{F}_{p^m}$, J. Franklin Inst., 350 (2013), 3260-3276. doi: 10.1016/j.jfranklin.2013.08.001. Google Scholar

[17]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symb. Comput., 26 (1998), 463-486. doi: 10.1006/jsco.1998.0224. Google Scholar

[18]

M. Giesbrecht and Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb F_q(t)$, Proc. 2003 Int. Symp. Symb. Alg. Comp. , ACM, New York, 2003,127–134. doi: 10.1145/860854.860888. Google Scholar

[19]

J. Gómez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of operator algebras in Algebraic and Algorithmic Aspects of Differential and Integral Operators Springer, Berlin, 2012, 23-82. doi: 10.1007/978-3-642-54479-8_2. Google Scholar

[20]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult preprint, arXiv: 1505.07252Google Scholar

[21]

S. González, V. T. Markov, C. Martíınez, A. A. Nechaev and I. F. Rúa, Nonassociative Galois rings (in Russian), Diskret. Mat. , 14 (2002), 117–132; translation in Discr. Math. Appl. , 12 (2002), 519–606. Google Scholar

[22]

S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa, On cyclic topassociative generalized Galois rings, in Finite Fields and Applications, Springer, Berlin, 2004, 25–39. doi: 10.1007/978-3-540-24633-6_3. Google Scholar

[23]

S. GonzálezV. T. MarkovC. MartínezA. A. Nechaev and I. F. Rúa, Cyclic generalized Galois rings, Comm. Algebra, 33 (2005), 4467-4478. doi: 10.1080/00927870500274796. Google Scholar

[24]

S. GonzálezC. MartínezI. F. RúaV. T. Markov and A. A. Nechaev, Coordinate sets of generalized Galois rings, J. Algebra Appl., 3 (2004), 31-48. doi: 10.1142/S0219498804000678. Google Scholar

[25]

N. Jacobson, Finite-Dimensional Division Algebras over Fields Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-02429-0. Google Scholar

[26]

S. JitmanS. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63. doi: 10.3934/amc.2012.6.39. Google Scholar

[27]

B. KongX. Zheng and H. Ma, The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 338 (2015), 256-261. doi: 10.1016/j.disc.2014.09.013. Google Scholar

[28]

M. Lavrauw and J. Sheekey, Semifields from skew polynomial rings, Adv. Geom., 13 (2013), 583-604. doi: 10.1515/advgeom-2013-0003. Google Scholar

[29]

A. Leroy, Noncommutative polynomial maps J. Algebra Appl. 11 (2012), 16. doi: 10.1142/S0219498812500764. Google Scholar

[30]

X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1-19. doi: 10.1016/j.ffa.2015.01.004. Google Scholar

[31]

B. McDonald, Finite Rings with Identity Marcel Dekker Inc. , New York, 1974. Google Scholar

[32]

F. Oggier and B. A. Sethuraman, Quotients of orders in cyclic algebras and space-time codes, Adv. Math. Commun., 7 (2013), 441-461. doi: 10.3934/amc.2013.7.441. Google Scholar

[33]

J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Sémin. Dubriel. Algébre Th. Nombr., 20 (1966), 1-18. Google Scholar

[34]

S. Pumplün, A note on linear codes and nonassociative algebras obtained from skew polynomial rings preprint, arXiv: 1504.00190Google Scholar

[35]

S. Pumplün, How to obtain lattices from $(f, σ, δ)$-codes via a generalization of Construction A preprint, arXiv: 1607.03787Google Scholar

[36]

S. Pumplün, Quotients of orders in algebras obtained from skew polynomials and possible applications preprint, arXiv: 1609.04201Google Scholar

[37]

S. Pumplün, Tensor products of nonassociative cyclic algebras, J. Algebra, 451 (2016), 145-165. doi: 10.1016/j.jalgebra.2015.12.007. Google Scholar

[38]

S. Pumplün and A. Steele, Classes of nonassociative algebras carrying maps of degree $n$ with interesting properties available at http://agt2.cie.uma.es/~loos/jordan/archive/semimult/semimult.pdfGoogle Scholar

[39]

S. Pumplün and A. Steele, Fast-decodable MIDO codes from nonassociative algebras, Int. J. Inf. Coding Theory, 3 (2015), 15-38. doi: 10.1504/IJICOT.2015.068695. Google Scholar

[40]

S. Pumplün and A. Steele, The nonassociative algebras used to build fast-decodable space-time block codes, Adv. Math. Commun., 9 (2015), 449-469. doi: 10.3934/amc.2015.9.449. Google Scholar

[41]

L. Rónyai, Factoring polynomials over finite fields, J. Algorithms, 9 (1988), 391-400. doi: 10.1016/0196-6774(88)90029-6. Google Scholar

[42]

R. Sandler, Autotopism groups of some finite non-associative algebras, Amer. J. Math., 84 (1962), 239-264. doi: 10.2307/2372761. Google Scholar

[43]

R. D. Schafer, An Introduction to Nonassociative Algebras Dover Publ. Inc. , New York, 1995. Google Scholar

[44]

M. F. Singer, Testing reducibility of linear differential operators: a group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104. doi: 10.1007/BF01191378. Google Scholar

[45]

A. Steele, Some New Classes of Algebras Ph. D thesis, Univ. Nottingham, 2013.Google Scholar

[46]

A. Steele, Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387. doi: 10.1007/s11856-014-0021-7. Google Scholar

[47]

A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and nonassociative cyclic algebras, Inf. Theory Workshop (ITW), IEEE, 2012,192–196. doi: 10.1007/s11856-014-0021-7. Google Scholar

[48]

E. A. Whelan, A note on finite local rings, Rocky Mount. J. Math., 22 (1992), 757-759. doi: 10.1216/rmjm/1181072765. Google Scholar

show all references

References:
[1]

Y. Alkhamees, The group of automorphisms of finite chain rings, Arab Gulf J. Scient. Res., 8 (1990), 17-28. Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42 (1991), 387-391. doi: 10.1093/qmath/42.1.387. Google Scholar

[3]

A. BatoulK. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings, Des. Codes Crypt., 70 (2014), 347-358. doi: 10.1007/s10623-012-9696-0. Google Scholar

[4]

M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Crypt., 62 (2012), 85-101. doi: 10.1007/s10623-011-9494-0. Google Scholar

[5]

D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, AAECC, 18 (2007), 370-389. doi: 10.1007/s00200-007-0043-z. Google Scholar

[6]

D. BoucherP. Solé and F. Ulmer, Skew-constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292. doi: 10.3934/amc.2008.2.273. Google Scholar

[7]

D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014), 405-431. doi: 10.1007/s10623-012-9704-4. Google Scholar

[8]

M. Boulagouaz and A. Leroy, $(σ, δ)$-codes, Adv. Math. Commun., 7 (2013), 463-474. doi: 10.3934/amc.2013.7.463. Google Scholar

[9]

C. Brown, Ph. D thesis, Univ. Nottingham, in preparation.Google Scholar

[10]

Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135. doi: 10.1016/j.ffa.2013.07.001. Google Scholar

[11]

P. M. Cohn, Skew Fields. Theory of General Division Rings Cambridge Univ. Press, Cambridge, 1995. doi: 10.1017/CBO9781139087193. Google Scholar

[12]

J. Ducoat and F. Oggier, Lattice encoding of cyclic codes from skew polynomial rings in Proc. 4th Int Castle Meet. Coding Theory Appl. Palmela, 2014.Google Scholar

[13]

J. Ducoat and F. Oggier, On skew polynomial codes and lattices from quotients of cyclic division algebras, Adv. Math. Commun., 10 (2016), 79-94. doi: 10.3934/amc.2016.10.79. Google Scholar

[14]

C. FengR. W. NobregaF. R. Kschischang and D. Silva, Communication over finite-chain-ring matrix channels, IEEE Trans. Inf. Theory, 60 (2014), 5899-5917. doi: 10.1109/TIT.2014.2346079. Google Scholar

[15]

N. Fogarty and H. Gluesing-Luerssen, A circulant approach to skew-constacyclic codes, Finite Fields Appl., 35 (2015), 92-114. doi: 10.1016/j.ffa.2015.03.008. Google Scholar

[16]

J. Gao and Q. Kong, Qiong 1-generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\dots+u^{s-1}\mathbb{F}_{p^m}$, J. Franklin Inst., 350 (2013), 3260-3276. doi: 10.1016/j.jfranklin.2013.08.001. Google Scholar

[17]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symb. Comput., 26 (1998), 463-486. doi: 10.1006/jsco.1998.0224. Google Scholar

[18]

M. Giesbrecht and Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb F_q(t)$, Proc. 2003 Int. Symp. Symb. Alg. Comp. , ACM, New York, 2003,127–134. doi: 10.1145/860854.860888. Google Scholar

[19]

J. Gómez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of operator algebras in Algebraic and Algorithmic Aspects of Differential and Integral Operators Springer, Berlin, 2012, 23-82. doi: 10.1007/978-3-642-54479-8_2. Google Scholar

[20]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult preprint, arXiv: 1505.07252Google Scholar

[21]

S. González, V. T. Markov, C. Martíınez, A. A. Nechaev and I. F. Rúa, Nonassociative Galois rings (in Russian), Diskret. Mat. , 14 (2002), 117–132; translation in Discr. Math. Appl. , 12 (2002), 519–606. Google Scholar

[22]

S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa, On cyclic topassociative generalized Galois rings, in Finite Fields and Applications, Springer, Berlin, 2004, 25–39. doi: 10.1007/978-3-540-24633-6_3. Google Scholar

[23]

S. GonzálezV. T. MarkovC. MartínezA. A. Nechaev and I. F. Rúa, Cyclic generalized Galois rings, Comm. Algebra, 33 (2005), 4467-4478. doi: 10.1080/00927870500274796. Google Scholar

[24]

S. GonzálezC. MartínezI. F. RúaV. T. Markov and A. A. Nechaev, Coordinate sets of generalized Galois rings, J. Algebra Appl., 3 (2004), 31-48. doi: 10.1142/S0219498804000678. Google Scholar

[25]

N. Jacobson, Finite-Dimensional Division Algebras over Fields Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-02429-0. Google Scholar

[26]

S. JitmanS. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63. doi: 10.3934/amc.2012.6.39. Google Scholar

[27]

B. KongX. Zheng and H. Ma, The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 338 (2015), 256-261. doi: 10.1016/j.disc.2014.09.013. Google Scholar

[28]

M. Lavrauw and J. Sheekey, Semifields from skew polynomial rings, Adv. Geom., 13 (2013), 583-604. doi: 10.1515/advgeom-2013-0003. Google Scholar

[29]

A. Leroy, Noncommutative polynomial maps J. Algebra Appl. 11 (2012), 16. doi: 10.1142/S0219498812500764. Google Scholar

[30]

X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1-19. doi: 10.1016/j.ffa.2015.01.004. Google Scholar

[31]

B. McDonald, Finite Rings with Identity Marcel Dekker Inc. , New York, 1974. Google Scholar

[32]

F. Oggier and B. A. Sethuraman, Quotients of orders in cyclic algebras and space-time codes, Adv. Math. Commun., 7 (2013), 441-461. doi: 10.3934/amc.2013.7.441. Google Scholar

[33]

J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Sémin. Dubriel. Algébre Th. Nombr., 20 (1966), 1-18. Google Scholar

[34]

S. Pumplün, A note on linear codes and nonassociative algebras obtained from skew polynomial rings preprint, arXiv: 1504.00190Google Scholar

[35]

S. Pumplün, How to obtain lattices from $(f, σ, δ)$-codes via a generalization of Construction A preprint, arXiv: 1607.03787Google Scholar

[36]

S. Pumplün, Quotients of orders in algebras obtained from skew polynomials and possible applications preprint, arXiv: 1609.04201Google Scholar

[37]

S. Pumplün, Tensor products of nonassociative cyclic algebras, J. Algebra, 451 (2016), 145-165. doi: 10.1016/j.jalgebra.2015.12.007. Google Scholar

[38]

S. Pumplün and A. Steele, Classes of nonassociative algebras carrying maps of degree $n$ with interesting properties available at http://agt2.cie.uma.es/~loos/jordan/archive/semimult/semimult.pdfGoogle Scholar

[39]

S. Pumplün and A. Steele, Fast-decodable MIDO codes from nonassociative algebras, Int. J. Inf. Coding Theory, 3 (2015), 15-38. doi: 10.1504/IJICOT.2015.068695. Google Scholar

[40]

S. Pumplün and A. Steele, The nonassociative algebras used to build fast-decodable space-time block codes, Adv. Math. Commun., 9 (2015), 449-469. doi: 10.3934/amc.2015.9.449. Google Scholar

[41]

L. Rónyai, Factoring polynomials over finite fields, J. Algorithms, 9 (1988), 391-400. doi: 10.1016/0196-6774(88)90029-6. Google Scholar

[42]

R. Sandler, Autotopism groups of some finite non-associative algebras, Amer. J. Math., 84 (1962), 239-264. doi: 10.2307/2372761. Google Scholar

[43]

R. D. Schafer, An Introduction to Nonassociative Algebras Dover Publ. Inc. , New York, 1995. Google Scholar

[44]

M. F. Singer, Testing reducibility of linear differential operators: a group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104. doi: 10.1007/BF01191378. Google Scholar

[45]

A. Steele, Some New Classes of Algebras Ph. D thesis, Univ. Nottingham, 2013.Google Scholar

[46]

A. Steele, Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387. doi: 10.1007/s11856-014-0021-7. Google Scholar

[47]

A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and nonassociative cyclic algebras, Inf. Theory Workshop (ITW), IEEE, 2012,192–196. doi: 10.1007/s11856-014-0021-7. Google Scholar

[48]

E. A. Whelan, A note on finite local rings, Rocky Mount. J. Math., 22 (1992), 757-759. doi: 10.1216/rmjm/1181072765. Google Scholar

[1]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[2]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[3]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[4]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[5]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[6]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[7]

Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175

[8]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[9]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[10]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[11]

Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99

[12]

Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313

[13]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[14]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[15]

Delphine Boucher. A first step towards the skew duadic codes. Advances in Mathematics of Communications, 2018, 12 (3) : 553-577. doi: 10.3934/amc.2018033

[16]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[17]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[18]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[19]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[20]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (9)
  • Cited by (1)

Other articles
by authors

[Back to Top]