[1]
|
A. Baartmans and V. Yorgov, Some new extremal codes of lengths 76 and 78, IEEE Trans. Inf. Theory, 49 (2003), 1353-1354.
doi: 10.1109/tit.2003.810653.
|
[2]
|
I. Bouyukliev, About the code equivalence, in Advances in Coding Theory and Cryptography,
World Scient. Publ. Comp. , 2007,126–151.
doi: 10.1142/9789812772022_0009.
|
[3]
|
R. Dontcheva and M. Harada, Extremal doubly-even [80, 40, 16] codes with an automorphism of order 19, Finite Fields Appl., 9 (2003), 157-167.
doi: 10.1016/s1071-5797(02)00018-7.
|
[4]
|
G. Dorfer and H. Maharaj, Generalized AG codes and generalized duality, Finite Fields Appl., 9 (2003), 194-210.
doi: 10.1016/s1071-5797(02)00027-8.
|
[5]
|
S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inf. Theory, 43 (1997), 2036-2047.
doi: 10.1109/18.641574.
|
[6]
|
P. Gaborit and A. Otmani, Experimental constructions of self-dual codes, Finite Fields Appl., 9 (2003), 372-394.
doi: 10.1016/s1071-5797(03)00011-x.
|
[7]
|
The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4. 8. 6,2016, http://www.gap-system.org
|
[8]
|
T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74–88, Discr. Math., 306 (2006), 2064-2072.
doi: 10.1016/j.disc.2006.05.004.
|
[9]
|
T. A. Gulliver, M. Harada and J.-L. Kim, Construction of new extremal self-dual codes, Discr. Math., 263 (2003), 81-91.
doi: 10.1016/s0012-365x(02)00570-8.
|
[10]
|
M. Harada and A. Munemasa,
On $s$-extremal singly even self-dual $[24k+8, 12k+4, 4k+2]$ codes preprint, arXiv: 1511.02972
|
[11]
|
M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inf. Theory, 52 (2006), 1266-1269.
doi: 10.1109/tit.2005.864416.
|
[12]
|
W. C. Huffman, Automorphisms of codes with applications to extremal doubly even codes of length 48, IEEE Trans. Inf. Theory, 28 (1982), 511-521.
doi: 10.1109/tit.1982.1056499.
|
[13]
|
W. C. Huffman and V. S. Pless,
Fundamentals of Error-Correcting Codes Cambridge Univ. Press, 2003.
doi: 10.1017/CBO9780511807077.
|
[14]
|
S. Kapralov, R. Russeva and V. Radeva, New extremal doubly even [80, 40, 16] codes with
an automorphism of order 13, in Proc. 8th Int. Workshop Algebr. Combin. Coding Theory,
2002,139–142.
|
[15]
|
E. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.
doi: 10.1109/18.651000.
|
[16]
|
N. Yankov, Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7, Adv. Math. Commun., 8 (2014), 73-81.
doi: 10.3934/amc.2014.8.73.
|
[17]
|
N. Yankov, D. Anev and M. Gürel,
Constructing the self-dual codes with an automorphism of order 13 with 6 cycles available at http://shu.bg/tadmin/upload/storage/2497.pdf
|
[18]
|
N. Yankov and M. H. Lee, Classification of self-dual codes of length 50 with an automorphism of odd prime order, Des. Codes Crypt., 74 (2015), 571-579.
doi: 10.1007/s10623-013-9874-8.
|
[19]
|
N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inf. Theory, 57 (2011), 7498-7506.
doi: 10.1109/TIT.2011.2155619.
|
[20]
|
V. Yorgov, Binary self-dual codes with automorphisms of odd order, Probl. Inf. Transm., 19 (1983), 260-270.
|
[21]
|
V. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inf. Theory, 33 (1987), 77-82.
doi: 10.1109/TIT.1987.1057273.
|
[22]
|
T. Zhang, J. Michel, T. Feng and G. Ge,
On the existence of certain optimal self-dual codes with lengths between 74 and 116 Electr. J. Combin. 22 (2015), P4. 33.
|