November  2017, 11(4): 647-669. doi: 10.3934/amc.2017048

Duursma's reduced polynomial

Section of Algebra, Department of Mathematics and Informatics, Kliment Ohridski University of Sofia, James Bouchier Blvd., Sofia 1164, Bulgaria

Received  August 2014 Published  November 2017

Fund Project: Supported by Contract 015/9.04.2014 with the Scientific Foundation of the University of Sofia.

The weight distribution $\{ \mathcal{W}_C^{(w)} \} _{w=0} ^n$ of a linear code $C \subset {\mathbb F}_q^n$ is put in an explicit bijective correspondence with Duursma's reduced polynomial $D_C(t) ∈ {\mathbb Q}[t]$ of $C$. We prove that the Riemann Hypothesis Analogue for a linear code $C$ requires the formal self-duality of $C$. Duursma's reduced polynomial $D_F(t) ∈ {\mathbb Z}[t]$ of the function field $F = {\mathbb F}_q(X)$ of a curve $X$ of genus $g$ over ${\mathbb F}_q$ is shown to provide a generating function $\frac{D_F(t)}{(1-t)(1-qt)} = \sum\limits _{i=0} ^{∞} \mathcal{B}_i t^{i}$ for the numbers $\mathcal{B}_i$ of the effective divisors of degree $i ≥0$ of a virtual function field of a curve of genus $g-1$ over ${\mathbb F}_q$.

Citation: Azniv Kasparian, Ivan Marinov. Duursma's reduced polynomial. Advances in Mathematics of Communications, 2017, 11 (4) : 647-669. doi: 10.3934/amc.2017048
References:
[1]

S. Dodunekov and I. Landgev, Near MDS-codes, Journal of Geometry, 54 (1995), 30-43.  doi: 10.1007/BF01222850.  Google Scholar

[2]

I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.  doi: 10.1090/S0002-9947-99-02179-0.  Google Scholar

[3]

I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.  doi: 10.1016/S0166-218X(00)00344-9.  Google Scholar

[4]

I. Duursma, Combinatorics of the two-variable zeta function in Finite Fields and Applications, Lecture Notes in Computational Sciences, Springer, Berlin, 2948 (2004), 109-136.  Google Scholar

[5]

D. Ch. Kim and J. Y. Hyun, A Riemann hypothesis analogue for near-MDS codes, Discrete Applied Mathematics, 160 (2012), 2440-2444.  doi: 10.1016/j.dam.2012.07.008.  Google Scholar

[6]

H. Niederreiter and Ch. Xing, Algebraic Geometry in Coding Theory and Cryptography Princeton University Press, 2009.  Google Scholar

show all references

References:
[1]

S. Dodunekov and I. Landgev, Near MDS-codes, Journal of Geometry, 54 (1995), 30-43.  doi: 10.1007/BF01222850.  Google Scholar

[2]

I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.  doi: 10.1090/S0002-9947-99-02179-0.  Google Scholar

[3]

I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.  doi: 10.1016/S0166-218X(00)00344-9.  Google Scholar

[4]

I. Duursma, Combinatorics of the two-variable zeta function in Finite Fields and Applications, Lecture Notes in Computational Sciences, Springer, Berlin, 2948 (2004), 109-136.  Google Scholar

[5]

D. Ch. Kim and J. Y. Hyun, A Riemann hypothesis analogue for near-MDS codes, Discrete Applied Mathematics, 160 (2012), 2440-2444.  doi: 10.1016/j.dam.2012.07.008.  Google Scholar

[6]

H. Niederreiter and Ch. Xing, Algebraic Geometry in Coding Theory and Cryptography Princeton University Press, 2009.  Google Scholar

[1]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[2]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[3]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[6]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[7]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[8]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[9]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[10]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[11]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[12]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[13]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[14]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[15]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[16]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[17]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[18]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[19]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (126)
  • HTML views (432)
  • Cited by (0)

Other articles
by authors

[Back to Top]