The weight distribution $\{ \mathcal{W}_C^{(w)} \} _{w=0} ^n$ of a linear code $C \subset {\mathbb F}_q^n$ is put in an explicit bijective correspondence with Duursma's reduced polynomial $D_C(t) ∈ {\mathbb Q}[t]$ of $C$ . We prove that the Riemann Hypothesis Analogue for a linear code $C$ requires the formal self-duality of $C$ . Duursma's reduced polynomial $D_F(t) ∈ {\mathbb Z}[t]$ of the function field $F = {\mathbb F}_q(X)$ of a curve $X$ of genus $g$ over ${\mathbb F}_q$ is shown to provide a generating function $\frac{D_F(t)}{(1-t)(1-qt)} = \sum\limits _{i=0} ^{∞} \mathcal{B}_i t^{i}$ for the numbers $\mathcal{B}_i$ of the effective divisors of degree $i ≥0$ of a virtual function field of a curve of genus $g-1$ over ${\mathbb F}_q$ .
Citation: |
[1] |
S. Dodunekov and I. Landgev, Near MDS-codes, Journal of Geometry, 54 (1995), 30-43.
doi: 10.1007/BF01222850.![]() ![]() ![]() |
[2] |
I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.
doi: 10.1090/S0002-9947-99-02179-0.![]() ![]() ![]() |
[3] |
I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
doi: 10.1016/S0166-218X(00)00344-9.![]() ![]() ![]() |
[4] |
I. Duursma, Combinatorics of the two-variable zeta function in Finite Fields and Applications, Lecture Notes in Computational Sciences, Springer, Berlin, 2948 (2004), 109-136.
![]() ![]() |
[5] |
D. Ch. Kim and J. Y. Hyun, A Riemann hypothesis analogue for near-MDS codes, Discrete Applied Mathematics, 160 (2012), 2440-2444.
doi: 10.1016/j.dam.2012.07.008.![]() ![]() ![]() |
[6] |
H. Niederreiter and Ch. Xing,
Algebraic Geometry in Coding Theory and Cryptography Princeton University Press, 2009.
![]() ![]() |