\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new nonbinary sequence family with low correlation and large size

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • Let $p$ be an odd prime, $n≥q3$ and $k$ positive integers with $e=\gcd(n,k)$ . In this paper, a new family $\mathcal{S}$ of $p$ -ary sequences with period $N=p^n-1$ is proposed. The sequences in $\mathcal{S}$ are constructed by adding a $p$ -ary sequence to its two decimated sequences with different phase shifts. The correlation distribution among sequences in $\mathcal{S}$ is completely determined. It is shown that the maximum magnitude of nontrivial correlations of $\mathcal{S}$ is upper bounded by $p^e\sqrt{N+1}+1$ , and the family size of $\mathcal{S}$ is $N^2$ . Our sequence family has a large family size and low correlation.

    Mathematics Subject Classification: Primary: 94A55; Secondary: 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. T. ChoiT. LimJ. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^{m}+1)^{2}}{2(p+1)}$, IEEE Trans. Inf. Theory, 58 (2012), 1873-1879.  doi: 10.1109/TIT.2011.2177573.
    [2] G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867.  doi: 10.1109/TIT.2002.804044.
    [3] T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.
    [4] T. Kasami, Weight distribution of Bose-Chaudhuri-Hocquenghem codes, in Combinatorial Mathematics and Its Applications, Chapel Hill, NC: Univ. North Carolina Press, 1969,335-357.
    [5] T. Kasami, Weight Distribution Formular for Some Class of Cyclic Codes, Coordinated Science Lab., Univ. Illinois at Urbana-Champaign, Urbana, IL, Tech. Rep. R-285(AD 637524), 1966.
    [6] J. Y. KimS. T. ChoiJ. S. No and H. Chung, A new family of $p$-ary sequences of period $(p^n-1)/2$ with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 3825-3830.  doi: 10.1109/TIT.2011.2133730.
    [7] D. S. KimH. J. Chae and H. Y. Song, A generalizaton of the family of $p$-ary decimated sequences with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 7614-7617.  doi: 10.1109/TIT.2011.2159576.
    [8] P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properites better than binary sequences, IEEE Trans. Inf. Theory, 37 (1991), 603-616. 
    [9] H. Liang and Y. Tang, The cross correlation distribution of a $p$-ary $m$-sequence of period $p^m-1$ and its decimated sequences by $(p^k+1)(p^m+1)/4$, Finite Fields Appl., 31 (2015), 137-161.  doi: 10.1016/j.ffa.2014.10.005.
    [10] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983.
    [11] S. C. Liu and J. J. Komo, Nonbinary Kasami sequences over $GF(p)$, IEEE Trans. Inf. Theory, 38 (1992), 1409-1412.  doi: 10.1109/18.144728.
    [12] J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.
    [13] J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.  doi: 10.1109/TIT.2008.2006394.
    [14] J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation, in Proceeding of IWSDA'11, 2011, 44-47. doi: 10.1109/IWSDA.2011.6159435.
    [15] E. N. Muller, On the crosscorrelation of sequences over $GF(p)$ with short periods, IEEE Trans. Inf. Theory, 45 (1999), 289-295.  doi: 10.1109/18.746820.
    [16] G. J. NessT. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, 52 (2006), 2241-2247.  doi: 10.1109/TIT.2006.872857.
    [17] E. Y. SeoY. S. KimJ. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$, IEEE Trans. Inf. Theory, 54 (2008), 3140-3149.  doi: 10.1109/TIT.2008.924694.
    [18] Y. SunZ. WangH. Li and T. Yan, The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$, Adv. Math. Commun., 7 (2013), 409-424.  doi: 10.3934/amc.2013.7.409.
    [19] Y. XiaX. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^n+1}{p+1}-\frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 21 (2010), 329-342.  doi: 10.1007/s00200-010-0128-y.
    [20] Y. Xia and S. Chen, A new family of $p$-ary sequences with low correlation constructed from decimated sequences, IEEE Trans. Inf. Theory, 58 (2012), 6037-6046.  doi: 10.1109/TIT.2012.2201132.
    [21] N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636.  doi: 10.1109/TIT.2006.871062.
  • 加载中
SHARE

Article Metrics

HTML views(1872) PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return