November  2017, 11(4): 671-691. doi: 10.3934/amc.2017049

A new nonbinary sequence family with low correlation and large size

1. 

School of Mathematical Sciences, Huaiyin Normal University, Huaian 223300, China

2. 

School of Mathematics & Computation Science, Anqing Normal University, Anqing 246133, China

3. 

School of Mathematics and Statistics, & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China

4. 

School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

* Corresponding author

Received  May 2015 Revised  February 2016 Published  November 2017

Let $p$ be an odd prime, $n≥q3$ and $k$ positive integers with $e=\gcd(n,k)$. In this paper, a new family $\mathcal{S}$ of $p$-ary sequences with period $N=p^n-1$ is proposed. The sequences in $\mathcal{S}$ are constructed by adding a $p$-ary sequence to its two decimated sequences with different phase shifts. The correlation distribution among sequences in $\mathcal{S}$ is completely determined. It is shown that the maximum magnitude of nontrivial correlations of $\mathcal{S}$ is upper bounded by $p^e\sqrt{N+1}+1$, and the family size of $\mathcal{S}$ is $N^2$. Our sequence family has a large family size and low correlation.

Citation: Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049
References:
[1]

S. T. ChoiT. LimJ. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^{m}+1)^{2}}{2(p+1)}$, IEEE Trans. Inf. Theory, 58 (2012), 1873-1879.  doi: 10.1109/TIT.2011.2177573.  Google Scholar

[2]

G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867.  doi: 10.1109/TIT.2002.804044.  Google Scholar

[3]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[4]

T. Kasami, Weight distribution of Bose-Chaudhuri-Hocquenghem codes, in Combinatorial Mathematics and Its Applications, Chapel Hill, NC: Univ. North Carolina Press, 1969,335-357.  Google Scholar

[5]

T. Kasami, Weight Distribution Formular for Some Class of Cyclic Codes, Coordinated Science Lab., Univ. Illinois at Urbana-Champaign, Urbana, IL, Tech. Rep. R-285(AD 637524), 1966. Google Scholar

[6]

J. Y. KimS. T. ChoiJ. S. No and H. Chung, A new family of $p$-ary sequences of period $(p^n-1)/2$ with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 3825-3830.  doi: 10.1109/TIT.2011.2133730.  Google Scholar

[7]

D. S. KimH. J. Chae and H. Y. Song, A generalizaton of the family of $p$-ary decimated sequences with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 7614-7617.  doi: 10.1109/TIT.2011.2159576.  Google Scholar

[8]

P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properites better than binary sequences, IEEE Trans. Inf. Theory, 37 (1991), 603-616.   Google Scholar

[9]

H. Liang and Y. Tang, The cross correlation distribution of a $p$-ary $m$-sequence of period $p^m-1$ and its decimated sequences by $(p^k+1)(p^m+1)/4$, Finite Fields Appl., 31 (2015), 137-161.  doi: 10.1016/j.ffa.2014.10.005.  Google Scholar

[10]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983.  Google Scholar

[11]

S. C. Liu and J. J. Komo, Nonbinary Kasami sequences over $GF(p)$, IEEE Trans. Inf. Theory, 38 (1992), 1409-1412.  doi: 10.1109/18.144728.  Google Scholar

[12]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.  Google Scholar

[13]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.  doi: 10.1109/TIT.2008.2006394.  Google Scholar

[14]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation, in Proceeding of IWSDA'11, 2011, 44-47. doi: 10.1109/IWSDA.2011.6159435.  Google Scholar

[15]

E. N. Muller, On the crosscorrelation of sequences over $GF(p)$ with short periods, IEEE Trans. Inf. Theory, 45 (1999), 289-295.  doi: 10.1109/18.746820.  Google Scholar

[16]

G. J. NessT. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, 52 (2006), 2241-2247.  doi: 10.1109/TIT.2006.872857.  Google Scholar

[17]

E. Y. SeoY. S. KimJ. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$, IEEE Trans. Inf. Theory, 54 (2008), 3140-3149.  doi: 10.1109/TIT.2008.924694.  Google Scholar

[18]

Y. SunZ. WangH. Li and T. Yan, The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$, Adv. Math. Commun., 7 (2013), 409-424.  doi: 10.3934/amc.2013.7.409.  Google Scholar

[19]

Y. XiaX. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^n+1}{p+1}-\frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 21 (2010), 329-342.  doi: 10.1007/s00200-010-0128-y.  Google Scholar

[20]

Y. Xia and S. Chen, A new family of $p$-ary sequences with low correlation constructed from decimated sequences, IEEE Trans. Inf. Theory, 58 (2012), 6037-6046.  doi: 10.1109/TIT.2012.2201132.  Google Scholar

[21]

N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636.  doi: 10.1109/TIT.2006.871062.  Google Scholar

show all references

References:
[1]

S. T. ChoiT. LimJ. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^{m}+1)^{2}}{2(p+1)}$, IEEE Trans. Inf. Theory, 58 (2012), 1873-1879.  doi: 10.1109/TIT.2011.2177573.  Google Scholar

[2]

G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867.  doi: 10.1109/TIT.2002.804044.  Google Scholar

[3]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[4]

T. Kasami, Weight distribution of Bose-Chaudhuri-Hocquenghem codes, in Combinatorial Mathematics and Its Applications, Chapel Hill, NC: Univ. North Carolina Press, 1969,335-357.  Google Scholar

[5]

T. Kasami, Weight Distribution Formular for Some Class of Cyclic Codes, Coordinated Science Lab., Univ. Illinois at Urbana-Champaign, Urbana, IL, Tech. Rep. R-285(AD 637524), 1966. Google Scholar

[6]

J. Y. KimS. T. ChoiJ. S. No and H. Chung, A new family of $p$-ary sequences of period $(p^n-1)/2$ with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 3825-3830.  doi: 10.1109/TIT.2011.2133730.  Google Scholar

[7]

D. S. KimH. J. Chae and H. Y. Song, A generalizaton of the family of $p$-ary decimated sequences with low correlation, IEEE Trans. Inf. Theory, 57 (2011), 7614-7617.  doi: 10.1109/TIT.2011.2159576.  Google Scholar

[8]

P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properites better than binary sequences, IEEE Trans. Inf. Theory, 37 (1991), 603-616.   Google Scholar

[9]

H. Liang and Y. Tang, The cross correlation distribution of a $p$-ary $m$-sequence of period $p^m-1$ and its decimated sequences by $(p^k+1)(p^m+1)/4$, Finite Fields Appl., 31 (2015), 137-161.  doi: 10.1016/j.ffa.2014.10.005.  Google Scholar

[10]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983.  Google Scholar

[11]

S. C. Liu and J. J. Komo, Nonbinary Kasami sequences over $GF(p)$, IEEE Trans. Inf. Theory, 38 (1992), 1409-1412.  doi: 10.1109/18.144728.  Google Scholar

[12]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.  Google Scholar

[13]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.  doi: 10.1109/TIT.2008.2006394.  Google Scholar

[14]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation, in Proceeding of IWSDA'11, 2011, 44-47. doi: 10.1109/IWSDA.2011.6159435.  Google Scholar

[15]

E. N. Muller, On the crosscorrelation of sequences over $GF(p)$ with short periods, IEEE Trans. Inf. Theory, 45 (1999), 289-295.  doi: 10.1109/18.746820.  Google Scholar

[16]

G. J. NessT. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation, IEEE Trans. Inf. Theory, 52 (2006), 2241-2247.  doi: 10.1109/TIT.2006.872857.  Google Scholar

[17]

E. Y. SeoY. S. KimJ. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$, IEEE Trans. Inf. Theory, 54 (2008), 3140-3149.  doi: 10.1109/TIT.2008.924694.  Google Scholar

[18]

Y. SunZ. WangH. Li and T. Yan, The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$, Adv. Math. Commun., 7 (2013), 409-424.  doi: 10.3934/amc.2013.7.409.  Google Scholar

[19]

Y. XiaX. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d=\frac{p^n+1}{p+1}-\frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 21 (2010), 329-342.  doi: 10.1007/s00200-010-0128-y.  Google Scholar

[20]

Y. Xia and S. Chen, A new family of $p$-ary sequences with low correlation constructed from decimated sequences, IEEE Trans. Inf. Theory, 58 (2012), 6037-6046.  doi: 10.1109/TIT.2012.2201132.  Google Scholar

[21]

N. Y. Yu and G. Gong, A new binary sequence family with low correlation and large size, IEEE Trans. Inf. Theory, 52 (2006), 1624-1636.  doi: 10.1109/TIT.2006.871062.  Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[3]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[4]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[5]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021006

[6]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[7]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[8]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[9]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[10]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[11]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[12]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[13]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[14]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[15]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[16]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[20]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (105)
  • HTML views (370)
  • Cited by (0)

[Back to Top]