November  2017, 11(4): 705-713. doi: 10.3934/amc.2017051

Constant dimension codes from Riemann-Roch spaces

1. 

Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

2. 

Department of Mathematics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy

Received  February 2016 Revised  June 2017 Published  November 2017

Fund Project: The research of D. Bartoli and M. Giulietti was supported by Ministry for Education, University and Research of Italy (MIUR) (Project "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA -INdAM).

Some families of constant dimension codes arising from Riemann-Roch spaces associated with particular divisors of a curve $\mathcal{X}$ are constructed. These families are generalizations of the one constructed by Hansen.

Citation: Daniele Bartoli, Matteo Bonini, Massimo Giulietti. Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11 (4) : 705-713. doi: 10.3934/amc.2017051
References:
[1]

D. Bartoli and F. Pavese, A note on Equidistant subspaces codes, Discrete Appl. Math., 198 (2016), 291-296.  doi: 10.1016/j.dam.2015.06.017.  Google Scholar

[2]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531.  doi: 10.1007/s10623-014-0018-6.  Google Scholar

[3]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[4]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017.  doi: 10.1109/TIT.2012.2220119.  Google Scholar

[5]

T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.  doi: 10.1109/TIT.2010.2095232.  Google Scholar

[6]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory, 56 (2010), 3207-3216.  doi: 10.1109/TIT.2010.2048447.  Google Scholar

[7]

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 2nd edition, 1994.  Google Scholar

[8]

J. P. Hansen, Riemann-Roch theorem and linear network codes, Int. J. Math. Comput. Sci., 10 (2015), 1-11.   Google Scholar

[9]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, in Topics in Finite Fields, Gohar Kyureghyan, Gary L. Mullen, Alexander Pott Editors, Contemporary Mathematics, 632 (2015), 157-176.  Google Scholar

[10]

A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, Cryptography and coding, in Lecture Notes in Compututer Science, Springer, Berlin, 5921 (2009), 1-21.  Google Scholar

[11]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. on Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[12]

D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[13]

A. L. Trautmann and J. Rosenthal, New improvements on the echelon-ferrers construction, in Proc. Int. Symp. on Math. Theory of Networks and Systems, 2010,405-408 Google Scholar

show all references

References:
[1]

D. Bartoli and F. Pavese, A note on Equidistant subspaces codes, Discrete Appl. Math., 198 (2016), 291-296.  doi: 10.1016/j.dam.2015.06.017.  Google Scholar

[2]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531.  doi: 10.1007/s10623-014-0018-6.  Google Scholar

[3]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[4]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017.  doi: 10.1109/TIT.2012.2220119.  Google Scholar

[5]

T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.  doi: 10.1109/TIT.2010.2095232.  Google Scholar

[6]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory, 56 (2010), 3207-3216.  doi: 10.1109/TIT.2010.2048447.  Google Scholar

[7]

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 2nd edition, 1994.  Google Scholar

[8]

J. P. Hansen, Riemann-Roch theorem and linear network codes, Int. J. Math. Comput. Sci., 10 (2015), 1-11.   Google Scholar

[9]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, in Topics in Finite Fields, Gohar Kyureghyan, Gary L. Mullen, Alexander Pott Editors, Contemporary Mathematics, 632 (2015), 157-176.  Google Scholar

[10]

A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, Cryptography and coding, in Lecture Notes in Compututer Science, Springer, Berlin, 5921 (2009), 1-21.  Google Scholar

[11]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. on Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[12]

D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[13]

A. L. Trautmann and J. Rosenthal, New improvements on the echelon-ferrers construction, in Proc. Int. Symp. on Math. Theory of Networks and Systems, 2010,405-408 Google Scholar

Table 1.  Normalized weight, rate, and normalized minimal distance, $s>1$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{ks+1-g}{nk+1-g}$$\frac{\log_q \binom{n}{s}}{(nk+1-g)(ks+1-g)}$$ \frac{1}{s+\frac{1-g}{k}}$
$\mathcal{A}_{k,s}$$\frac{ks+1-g}{nks+1-g}$$\frac{\log_q \binom{n+s-1}{s}}{(nks+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{B}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U_{n,s,0,w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{C}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{ks+1-g}{nk+1-g}$$\frac{\log_q \binom{n}{s}}{(nk+1-g)(ks+1-g)}$$ \frac{1}{s+\frac{1-g}{k}}$
$\mathcal{A}_{k,s}$$\frac{ks+1-g}{nks+1-g}$$\frac{\log_q \binom{n+s-1}{s}}{(nks+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{B}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U_{n,s,0,w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{C}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
Table 2.  Normalized weight, rate, and normalized minimal distance for $g=1$, $s>1$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{s}{n}$$\frac{\log_q \binom{n}{s}}{nk^2s}$$ \frac{1}{s}$
$\mathcal{A}_{k,s}$$\frac{1}{s}$$\frac{\log_q \binom{n+s-1}{s}}{nk^2s^2}$$\frac{1}{s}$
$\mathcal{B}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U_{n,s,0,w}}{nk^2ws}$$\frac{1}{s}$
$\mathcal{C}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{nk^2ws}$$\frac{1}{s}$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{s}{n}$$\frac{\log_q \binom{n}{s}}{nk^2s}$$ \frac{1}{s}$
$\mathcal{A}_{k,s}$$\frac{1}{s}$$\frac{\log_q \binom{n+s-1}{s}}{nk^2s^2}$$\frac{1}{s}$
$\mathcal{B}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U_{n,s,0,w}}{nk^2ws}$$\frac{1}{s}$
$\mathcal{C}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{nk^2ws}$$\frac{1}{s}$
Table 3.  Rates of $\mathcal{H}_{k,s}$, $\mathcal{A}_{k,s}$, $\mathcal{B}_{k,s,w}$, $\mathcal{C}_{k,s,w}$ for $q=16$, $8\leq n\leq 14$, $1\leq s <n$, $w=3$, $k=5$
$(n,s)$ $\mathcal{H}_{k,s}$ $\mathcal{A}_{k,s}$ $\mathcal{B}_{k,s,w}$ $\mathcal{C}_{k,s,w}$
$(8,1)$ $0.003750$ $0.003750$ $0.001250$ $0.008732$
$(8,2)$ $0.003005$ $0.001616$ $0.001077$ $0.004286$
$(8,3)$ $0.002420$ $0.000959$ $0.000959$ $0.002802$
$(8,4)$ $0.001915$ $0.000654$ $0.000868$ $0.002058$
$(8,5)$ $0.001452$ $0.000481$ $0.000792$ $0.001611$
$(8,6)$ $0.001002$ $0.000373$ $0.000728$ $0.001311$
$(8,7)$ $0.000536$ $0.000300$ $0.000671$ $0.001095$
$(9,1)$ $0.003522$ $0.003522$ $0.001174$ $0.008931$
$(9,2)$ $0.002872$ $0.001526$ $0.001017$ $0.004394$
$(9,3)$ $0.002368$ $0.000909$ $0.000909$ $0.002880$
$(9,4)$ $0.001938$ $0.000622$ $0.000826$ $0.002121$
$(9,5)$ $0.001551$ $0.000459$ $0.000758$ $0.001665$
$(9,6)$ $0.001184$ $0.000357$ $0.000700$ $0.001360$
$(9,7)$ $0.000821$ $0.000287$ $0.000649$ $0.001141$
$(9,8)$ $0.000440$ $0.000237$ $0.000604$ $0.000976$
$(10,1)$ $0.003322$ $0.003322$ $0.001107$ $0.009093$
$(10,2)$ $0.002746$ $0.001445$ $0.000964$ $0.004482$
$(10,3)$ $0.002302$ $0.000865$ $0.000865$ $0.002943$
$(10,4)$ $0.001929$ $0.000593$ $0.000788$ $0.002173$
$(10,5)$ $0.001595$ $0.000439$ $0.000726$ $0.001710$
$(10,6)$ $0.001286$ $0.000341$ $0.000673$ $0.001400$
$(10,7)$ $0.000987$ $0.000275$ $0.000627$ $0.001178$
$(10,8)$ $0.000686$ $0.000228$ $0.000586$ $0.001011$
$(10,9)$ $0.000369$ $0.000192$ $0.000549$ $0.000880$
$(11,1)$ $0.003145$ $0.003145$ $0.001048$ $0.009229$
$(11,2)$ $0.002628$ $0.001374$ $0.000916$ $0.004555$
$(11,3)$ $0.002232$ $0.000824$ $0.000824$ $0.002996$
$(11,4)$ $0.001901$ $0.000566$ $0.000754$ $0.002215$
$(11,5)$ $0.001609$ $0.000420$ $0.000697$ $0.001746$
$(11,6)$ $0.001341$ $0.000327$ $0.000648$ $0.001433$
$(11,7)$ $0.001087$ $0.000264$ $0.000606$ $0.001209$
$(11,8)$ $0.000837$ $0.000219$ $0.000568$ $0.001040$
$(11,9)$ $0.000584$ $0.000185$ $0.000534$ $0.000908$
$(11,10)$ $0.000314$ $0.000159$ $0.000503$ $0.000802$
$(12,1)$ $0.002987$ $0.002987$ $0.000996$ $0.009343$
$(12,2)$ $0.002518$ $0.001309$ $0.000873$ $0.004617$
$(12,3)$ $0.002161$ $0.000788$ $0.000788$ $0.003040$
$(12,4)$ $0.001865$ $0.000542$ $0.000722$ $0.002251$
$(12,5)$ $0.001605$ $0.000403$ $0.000669$ $0.001778$
$(12,6)$ $0.001368$ $0.000315$ $0.000624$ $0.001461$
$(12,7)$ $0.001146$ $0.000254$ $0.000585$ $0.001234$
$(12,8)$ $0.000932$ $0.000211$ $0.000551$ $0.001064$
$(12,9)$ $0.000720$ $0.000179$ $0.000519$ $0.000931$
$(12,10)$ $0.000504$ $0.000154$ $0.000491$ $0.000824$
$(12,11)$ $0.000272$ $0.000134$ $0.000465$ $0.000736$
$(13,1)$ $0.002846$ $0.002846$ $0.000949$ $0.009440$
$(13,2)$ $0.002417$ $0.001251$ $0.000834$ $0.004670$
$(13,3)$ $0.002092$ $0.000755$ $0.000755$ $0.003079$
$(13,4)$ $0.001823$ $0.000521$ $0.000694$ $0.002282$
$(13,5)$ $0.001589$ $0.000388$ $0.000644$ $0.001804$
$(13,6)$ $0.001378$ $0.000303$ $0.000602$ $0.001485$
$(13,7)$ $0.001181$ $0.000245$ $0.000566$ $0.001256$
$(13,8)$ $0.000993$ $0.000204$ $0.000533$ $0.001085$
$(13,9)$ $0.000810$ $0.000173$ $0.000505$ $0.000950$
$(13,10)$ $0.000628$ $0.000148$ $0.000478$ $0.000843$
$(13,11)$ $0.000440$ $0.000129$ $0.000454$ $0.000755$
$(13,12)$ $0.000237$ $0.000114$ $0.000432$ $0.000681$
$(14,1)$ $0.002720$ $0.002720$ $0.000907$ $0.009486$
$(14,2)$ $0.002324$ $0.001199$ $0.000799$ $0.004705$
$(14,3)$ $0.002026$ $0.000725$ $0.000725$ $0.003102$
$(14,4)$ $0.001780$ $0.000501$ $0.000667$ $0.002307$
$(14,5)$ $0.001567$ $0.000373$ $0.000621$ $0.001827$
$(14,6)$ $0.001375$ $0.000292$ $0.000581$ $0.001511$
$(14,7)$ $0.001198$ $0.000237$ $0.000547$ $0.001252$
$(14,8)$ $0.001031$ $0.000197$ $0.000517$ $0.001106$
$(14,9)$ $0.000870$ $0.000167$ $0.000490$ $0.000974$
$(14,10)$ $0.000712$ $0.000144$ $0.000466$ $0.000865$
$(14,11)$ $0.000552$ $0.000125$ $0.000443$ $0.000768$
$(14,12)$ $0.000387$ $0.000111$ $0.000422$ $0.000699$
$(14,13)$ $0.000209$ $0.000099$ $0.000403$ $0.000635$
$(n,s)$ $\mathcal{H}_{k,s}$ $\mathcal{A}_{k,s}$ $\mathcal{B}_{k,s,w}$ $\mathcal{C}_{k,s,w}$
$(8,1)$ $0.003750$ $0.003750$ $0.001250$ $0.008732$
$(8,2)$ $0.003005$ $0.001616$ $0.001077$ $0.004286$
$(8,3)$ $0.002420$ $0.000959$ $0.000959$ $0.002802$
$(8,4)$ $0.001915$ $0.000654$ $0.000868$ $0.002058$
$(8,5)$ $0.001452$ $0.000481$ $0.000792$ $0.001611$
$(8,6)$ $0.001002$ $0.000373$ $0.000728$ $0.001311$
$(8,7)$ $0.000536$ $0.000300$ $0.000671$ $0.001095$
$(9,1)$ $0.003522$ $0.003522$ $0.001174$ $0.008931$
$(9,2)$ $0.002872$ $0.001526$ $0.001017$ $0.004394$
$(9,3)$ $0.002368$ $0.000909$ $0.000909$ $0.002880$
$(9,4)$ $0.001938$ $0.000622$ $0.000826$ $0.002121$
$(9,5)$ $0.001551$ $0.000459$ $0.000758$ $0.001665$
$(9,6)$ $0.001184$ $0.000357$ $0.000700$ $0.001360$
$(9,7)$ $0.000821$ $0.000287$ $0.000649$ $0.001141$
$(9,8)$ $0.000440$ $0.000237$ $0.000604$ $0.000976$
$(10,1)$ $0.003322$ $0.003322$ $0.001107$ $0.009093$
$(10,2)$ $0.002746$ $0.001445$ $0.000964$ $0.004482$
$(10,3)$ $0.002302$ $0.000865$ $0.000865$ $0.002943$
$(10,4)$ $0.001929$ $0.000593$ $0.000788$ $0.002173$
$(10,5)$ $0.001595$ $0.000439$ $0.000726$ $0.001710$
$(10,6)$ $0.001286$ $0.000341$ $0.000673$ $0.001400$
$(10,7)$ $0.000987$ $0.000275$ $0.000627$ $0.001178$
$(10,8)$ $0.000686$ $0.000228$ $0.000586$ $0.001011$
$(10,9)$ $0.000369$ $0.000192$ $0.000549$ $0.000880$
$(11,1)$ $0.003145$ $0.003145$ $0.001048$ $0.009229$
$(11,2)$ $0.002628$ $0.001374$ $0.000916$ $0.004555$
$(11,3)$ $0.002232$ $0.000824$ $0.000824$ $0.002996$
$(11,4)$ $0.001901$ $0.000566$ $0.000754$ $0.002215$
$(11,5)$ $0.001609$ $0.000420$ $0.000697$ $0.001746$
$(11,6)$ $0.001341$ $0.000327$ $0.000648$ $0.001433$
$(11,7)$ $0.001087$ $0.000264$ $0.000606$ $0.001209$
$(11,8)$ $0.000837$ $0.000219$ $0.000568$ $0.001040$
$(11,9)$ $0.000584$ $0.000185$ $0.000534$ $0.000908$
$(11,10)$ $0.000314$ $0.000159$ $0.000503$ $0.000802$
$(12,1)$ $0.002987$ $0.002987$ $0.000996$ $0.009343$
$(12,2)$ $0.002518$ $0.001309$ $0.000873$ $0.004617$
$(12,3)$ $0.002161$ $0.000788$ $0.000788$ $0.003040$
$(12,4)$ $0.001865$ $0.000542$ $0.000722$ $0.002251$
$(12,5)$ $0.001605$ $0.000403$ $0.000669$ $0.001778$
$(12,6)$ $0.001368$ $0.000315$ $0.000624$ $0.001461$
$(12,7)$ $0.001146$ $0.000254$ $0.000585$ $0.001234$
$(12,8)$ $0.000932$ $0.000211$ $0.000551$ $0.001064$
$(12,9)$ $0.000720$ $0.000179$ $0.000519$ $0.000931$
$(12,10)$ $0.000504$ $0.000154$ $0.000491$ $0.000824$
$(12,11)$ $0.000272$ $0.000134$ $0.000465$ $0.000736$
$(13,1)$ $0.002846$ $0.002846$ $0.000949$ $0.009440$
$(13,2)$ $0.002417$ $0.001251$ $0.000834$ $0.004670$
$(13,3)$ $0.002092$ $0.000755$ $0.000755$ $0.003079$
$(13,4)$ $0.001823$ $0.000521$ $0.000694$ $0.002282$
$(13,5)$ $0.001589$ $0.000388$ $0.000644$ $0.001804$
$(13,6)$ $0.001378$ $0.000303$ $0.000602$ $0.001485$
$(13,7)$ $0.001181$ $0.000245$ $0.000566$ $0.001256$
$(13,8)$ $0.000993$ $0.000204$ $0.000533$ $0.001085$
$(13,9)$ $0.000810$ $0.000173$ $0.000505$ $0.000950$
$(13,10)$ $0.000628$ $0.000148$ $0.000478$ $0.000843$
$(13,11)$ $0.000440$ $0.000129$ $0.000454$ $0.000755$
$(13,12)$ $0.000237$ $0.000114$ $0.000432$ $0.000681$
$(14,1)$ $0.002720$ $0.002720$ $0.000907$ $0.009486$
$(14,2)$ $0.002324$ $0.001199$ $0.000799$ $0.004705$
$(14,3)$ $0.002026$ $0.000725$ $0.000725$ $0.003102$
$(14,4)$ $0.001780$ $0.000501$ $0.000667$ $0.002307$
$(14,5)$ $0.001567$ $0.000373$ $0.000621$ $0.001827$
$(14,6)$ $0.001375$ $0.000292$ $0.000581$ $0.001511$
$(14,7)$ $0.001198$ $0.000237$ $0.000547$ $0.001252$
$(14,8)$ $0.001031$ $0.000197$ $0.000517$ $0.001106$
$(14,9)$ $0.000870$ $0.000167$ $0.000490$ $0.000974$
$(14,10)$ $0.000712$ $0.000144$ $0.000466$ $0.000865$
$(14,11)$ $0.000552$ $0.000125$ $0.000443$ $0.000768$
$(14,12)$ $0.000387$ $0.000111$ $0.000422$ $0.000699$
$(14,13)$ $0.000209$ $0.000099$ $0.000403$ $0.000635$
[1]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[2]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[3]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[4]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[5]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[6]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[7]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[8]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[9]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[10]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[11]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[12]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[13]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[14]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[15]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[16]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[17]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[18]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[19]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[20]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (84)
  • HTML views (345)
  • Cited by (0)

[Back to Top]