\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the classification of $\mathbb{Z}_4$-codes

Abstract Full Text(HTML) Figure(0) / Table(7) Related Papers Cited by
  • In this note, we study the classification of $\mathbb{Z}_4$ -codes. For some special cases $(k_1,k_2)$ , by hand, we give a classification of $\mathbb{Z}_4$ -codes of length $n$ and type $4^{k_1}2^{k_2}$ satisfying a certain condition. Our exhaustive computer search completes the classification of $\mathbb{Z}_4$ -codes of lengths up to $7$ .

    Mathematics Subject Classification: Primary: 94B05; Secondary: 94B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Length 1

    $|C|$ $k_1$ $k_2$ $N'(1,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(1,k_1,k_2)$
    $2$ $0$ $1$ $1$ $2^2$ $1$ $0$ $1$
     | Show Table
    DownLoad: CSV

    Table 2.  Length 2

    $|C|$ $k_1$ $k_2$ $N'(2,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(2,k_1,k_2)$
    $2$ $0$ $1$ $1$ $2^3$112
    $2^2$ $0$ $2$ $1$ $2^4$201
    $1$ $0$ $2$
     | Show Table
    DownLoad: CSV

    Table 3.  Length 3

    $|C|$ $k_1$ $k_2$ $N'(3,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(3,k_1,k_2)$
    $2$ $0$ $1$1$2^4$123
    $2^2$ $0$ $2$2205
    $1$ $0$3$2^5$213
    $2^3$031$2^6$301
    117
     | Show Table
    DownLoad: CSV

    Table 4.  Length 4

    $|C|$ $k_1$ $k_2$ $N'(4,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(4,k_1,k_2)$
    $2$ $0$ $1$1 $2^5$134
    $2^2$ $0$ $2$32123
    $1$ $0$4 $2^6$226
    $2^3$033309
    1117 $2^7$314
    $2^4$041 $2^8$401
    1216
    2018
     | Show Table
    DownLoad: CSV

    Table 5.  Length 5

    $|C|$ $k_1$ $k_2$ $N'(5,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(5,k_1,k_2)$
    $2$ $0$ $1$1$2^6$145
    $2^2$ $0$ $2$42267
    $1$ $0$53063
    $2^3$036$2^7$2310
    11333155
    $2^4$044$2^8$3210
    12544014
    2049$2^9$415
    $2^5$051$2^{10}$501
    1329
    21121
     | Show Table
    DownLoad: CSV

    Table 6.  Length 6

    $|C|$ $k_1$ $k_2$ $N'(6,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(6,k_1,k_2)$
    $2$ $0$ $1$1 $2^7$156
    $2^2$ $0$ $2$623157
    $1$ $0$631587
    $2^3$0312 $2^8$2416
    115832212
    $2^4$041140179
    12149 $2^9$3322
    2012141112
    $2^5$055 $2^{10}$4216
    13134 $5$020
    21499 $2^{11}$516
    $2^6$061 $2^{12}$601
    1447
    22500
    30381
     | Show Table
    DownLoad: CSV

    Table 7.  Length 7

    $|C|$ $k_1$ $k_2$ $N'(7,k_1,k_2)$ $|C|$ $k_1$ $k_2$ $N'(7,k_1,k_2)$
    $2$ $0$ $1$1$2^8$167
    $2^2$ $0$ $2$724319
    $1$ $0$7323247
    $2^3$0321402215
    1193$2^9$2523
    $2^4$042733648
    12359412257
    20256$2^{10}$3443
    $2^5$051742565
    1350350429
    211728$2^{11}$4343
    $2^6$06651204
    14283$2^{12}$5223
    2228966027
    301955$2^{13}$617
    $2^7$071$2^{14}$701
    1570
    231582
    315184
     | Show Table
    DownLoad: CSV
  • [1] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [2] J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Combin.Theory Ser. A, 62 (1993), 30-45.  doi: 10.1016/0097-3165(93)90070-O.
    [3] S. T. DoughertyT. A. GulliverY. H. Park and J. N. C. Wong, Optimal linear codes over $\mathbb{Z}_m$, J. Korean Math. Soc., 44 (2007), 1139-1162.  doi: 10.4134/JKMS.2007.44.5.1139.
    [4] T. A. Gulliver and J. N. C. Wong, Classification of optimal linear $\mathbb{Z}_4$ rate $1/2$ codes of length $≤ 8$, Ars Combin., 85 (2007), 287-306. 
    [5] A. R. HammonsJr.P. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.
    [6] M. Harada and A. Munemasa, On the classification of self-dual $\mathbb{Z}_k$-codes, Lecture Notes in Comput. Sci., 5921 (2009), 78-90. 
    [7] J. N. C. Wong, Classification of Small Optimal Linear Codes Over $Z_4$, Master's thesis, University of Victoria, 2002.
  • 加载中

Tables(7)

SHARE

Article Metrics

HTML views(717) PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return