
-
Previous Article
On the performance of optimal double circulant even codes
- AMC Home
- This Issue
-
Next Article
On the classification of $\mathbb{Z}_4$-codes
On primitive constant dimension codes and a geometrical sunflower bound
1. | Departament d'Enginyeria de la Informacio i de les Comunicacions, Edifici Q, Universitat Autónoma de Barcelona, 08193 -Bellaterra -Cerdanyola del Vallés (Barcelona), Spain |
2. | Department of Mathematics (WE01), Krijgslaan 281 -building S25, 9000 Gent, Belgium |
In this paper we study subspace codes with constant intersection dimension (SCIDs). We investigate the largest possible dimension spanned by such a code that can yield non-sunflower codes, and classify the examples attaining equality in that bound as one of two infinite families. We also construct a new infinite family of primitive SCIDs.
References:
[1] |
D. Bartoli and F. Pavese,
A note on equidistant subspace codes, Discrete Appl. Math., 198 (2016), 291-296.
doi: 10.1016/j.dam.2015.06.017. |
[2] |
A. Beutelspacher, J. Eisfeld and J. Müller,
On sets of planes in ${\text{PG}}(d,q)$ intersecting mutually in one point, Geom. Dedicata, 78 (1999), 143-159.
doi: 10.1023/A:1005294416997. |
[3] |
J. Eisfeld,
On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.
doi: 10.1016/S0012-365X(01)00390-9. |
[4] |
T. Etzion and N. Raviv,
Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.
doi: 10.1016/j.dam.2015.01.024. |
[5] |
R. Koetter and F. R. Kschischang,
Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449. |
[6] |
K. Metsch and L. Storme,
Partial $t$-spreads in ${\text{PG}}(2t+1,q)$, Des. Codes Cryptogr., 18 (1999), 199-216.
doi: 10.1023/A:1008305824113. |
[7] |
B. Segre,
Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.
doi: 10.1007/BF02410047. |
show all references
References:
[1] |
D. Bartoli and F. Pavese,
A note on equidistant subspace codes, Discrete Appl. Math., 198 (2016), 291-296.
doi: 10.1016/j.dam.2015.06.017. |
[2] |
A. Beutelspacher, J. Eisfeld and J. Müller,
On sets of planes in ${\text{PG}}(d,q)$ intersecting mutually in one point, Geom. Dedicata, 78 (1999), 143-159.
doi: 10.1023/A:1005294416997. |
[3] |
J. Eisfeld,
On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.
doi: 10.1016/S0012-365X(01)00390-9. |
[4] |
T. Etzion and N. Raviv,
Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.
doi: 10.1016/j.dam.2015.01.024. |
[5] |
R. Koetter and F. R. Kschischang,
Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449. |
[6] |
K. Metsch and L. Storme,
Partial $t$-spreads in ${\text{PG}}(2t+1,q)$, Des. Codes Cryptogr., 18 (1999), 199-216.
doi: 10.1023/A:1008305824113. |
[7] |
B. Segre,
Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.
doi: 10.1007/BF02410047. |


[1] |
Anna-Lena Trautmann. Isometry and automorphisms of constant dimension codes. Advances in Mathematics of Communications, 2013, 7 (2) : 147-160. doi: 10.3934/amc.2013.7.147 |
[2] |
Natalia Silberstein, Tuvi Etzion. Large constant dimension codes and lexicodes. Advances in Mathematics of Communications, 2011, 5 (2) : 177-189. doi: 10.3934/amc.2011.5.177 |
[3] |
Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033 |
[4] |
Sascha Kurz. The interplay of different metrics for the construction of constant dimension codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021069 |
[5] |
Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021007 |
[6] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[7] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[8] |
Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485 |
[9] |
Heide Gluesing-Luerssen, Carolyn Troha. Construction of subspace codes through linkage. Advances in Mathematics of Communications, 2016, 10 (3) : 525-540. doi: 10.3934/amc.2016023 |
[10] |
Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147 |
[11] |
Daniele Bartoli, Matteo Bonini, Massimo Giulietti. Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11 (4) : 705-713. doi: 10.3934/amc.2017051 |
[12] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
[13] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[14] |
Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035 |
[15] |
Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018 |
[16] |
Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 613-630. doi: 10.3934/amc.2020034 |
[17] |
Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048 |
[18] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[19] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[20] |
John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]