November  2017, 11(4): 767-775. doi: 10.3934/amc.2017056

On the performance of optimal double circulant even codes

1. 

Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC, Canada V8W 2Y2

2. 

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

* Corresponding author: Masaaki Harada

Received  April 2016 Published  November 2017

In this note, we investigate the performance of optimal double circulant even codes which are not self-dual, as measured by the decoding error probability in bounded distance decoding. To achieve this, we classify the optimal double circulant even codes that are not self-dual which have the smallest weight distribution for lengths up to 72. We also give some restrictions on the weight distributions of (extremal) self-dual [54, 27, 10] codes with shadows of minimum weight 3. Finally, we consider the performance of extremal self-dual codes of lengths 88 and 112.

Citation: T. Aaron Gulliver, Masaaki Harada. On the performance of optimal double circulant even codes. Advances in Mathematics of Communications, 2017, 11 (4) : 767-775. doi: 10.3934/amc.2017056
References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. BouyuklievaA. Malevich and W. Willems, On the performance of binary extremal self-dual codes, Adv. Math. Commun., 5 (2011), 267-274.  doi: 10.3934/amc.2011.5.267.  Google Scholar

[3]

S. Bouyuklieva and P. R. J. Östergård, New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.  doi: 10.1007/s10623-006-0018-2.  Google Scholar

[4]

N. ChigiraM. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr., 42 (2007), 93-101.   Google Scholar

[5]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[6]

R. Dontcheva and M. Harada, New extremal self-dual codes of length 62 and related extremal self-dual codes, IEEE Trans. Inform. Theory, 48 (2002), 2060-2064.  doi: 10.1109/TIT.2002.1013144.  Google Scholar

[7]

S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.  Google Scholar

[8]

S. T. Dougherty and M. Harada, New extremal self-dual codes of length 68, IEEE Trans. Inform. Theory, 45 (1999), 2133-2136.  doi: 10.1109/18.782158.  Google Scholar

[9]

A. FaldumJ. LafuenteG. Ochoa and W. Willems, Error probabilities for bounded distance decoding, Des. Codes Cryptogr., 40 (2006), 237-252.  doi: 10.1007/s10623-006-0010-x.  Google Scholar

[10]

T. A. Gulliver and M. Harada, Classification of extremal double circulant formally self-dual even codes, Des. Codes Cryptogr., 11 (1997), 25-35.  doi: 10.1023/A:1008206223659.  Google Scholar

[11]

T. A. Gulliver and M. Harada, The existence of a formally self-dual even [70, 35, 14] code, Appl. Math. Lett., 11 (1998), 95-98.  doi: 10.1016/S0893-9659(97)00140-7.  Google Scholar

[12]

T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes Cryptogr., 13 (1998), 257-269.  doi: 10.1023/A:1008249924142.  Google Scholar

[13]

T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74-88, Discrete Math., 306 (2006), 2064-2072.  doi: 10.1016/j.disc.2006.05.004.  Google Scholar

[14]

T. A. Gulliver and M. Harada, On extremal double circulant self-dual codes of lengths 90-96, (submitted), arXiv: 1601.07343. Google Scholar

[15]

M. Harada, An extremal doubly even self-dual code of length 112, Electron. J. Combin. 15(2008), Note 33, 5 pp.  Google Scholar

[16]

M. HaradaT. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to 62, Discrete Math., 188 (1998), 127-136.  doi: 10.1016/S0012-365X(97)00250-1.  Google Scholar

[17]

M. Harada and T. Nishimura, An extremal singly even self-dual code of length 88, Adv. Math. Commun., 1 (2007), 261-267.  doi: 10.3934/amc.2007.1.261.  Google Scholar

[18]

S. K. HoughtenC. W. H. LamL. H. Thiel and J. A. Parker, The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code, IEEE Trans. Inform. Theory, 49 (2003), 53-59.  doi: 10.1109/TIT.2002.806146.  Google Scholar

[19]

W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490.  doi: 10.1016/j.ffa.2005.05.012.  Google Scholar

[20]

W. C. Huffman and V. D. Tonchev, The existence of extremal self-dual [50, 25, 10] codes and quasi-symmetric 2-(49, 9, 6) designs, Des. Codes Cryptogr., 6 (1996), 97-106.  doi: 10.1007/BF01398008.  Google Scholar

[21]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Inform. Control, 22 (1973), 188-200.  doi: 10.1016/S0019-9958(73)90273-8.  Google Scholar

[22]

E. Rains and N. J. A. Sloane, Self-dual codes, Handbook of Coding Theory, V. S. Pless and W. C. Huffman (Editors), Elsevier, Amsterdam, 1998,177-294.  Google Scholar

[23]

R. Russeva and N. Yankov, On binary self-dual codes of lengths 60, 62, 64 and 66 having an automorphism of order 9, Des. Codes Cryptogr., 45 (2007), 335-346.  doi: 10.1007/s10623-007-9127-9.  Google Scholar

[24]

N. J. A. Sloane, Is there a (72, 36) d=16 self-dual code? IEEE Trans. Inform. Theory 19(1973), p251.  Google Scholar

[25]

N. Yankov and M. H. Lee, New binary self-dual codes of lengths 50-60, Des. Codes Cryptogr., 73 (2014), 983-996.  doi: 10.1007/s10623-013-9839-y.  Google Scholar

[26]

N. YankovM. H. LeeM. Gürel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[27]

N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, 57 (2011), 7498-7506.  doi: 10.1109/TIT.2011.2155619.  Google Scholar

show all references

References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. BouyuklievaA. Malevich and W. Willems, On the performance of binary extremal self-dual codes, Adv. Math. Commun., 5 (2011), 267-274.  doi: 10.3934/amc.2011.5.267.  Google Scholar

[3]

S. Bouyuklieva and P. R. J. Östergård, New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.  doi: 10.1007/s10623-006-0018-2.  Google Scholar

[4]

N. ChigiraM. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr., 42 (2007), 93-101.   Google Scholar

[5]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[6]

R. Dontcheva and M. Harada, New extremal self-dual codes of length 62 and related extremal self-dual codes, IEEE Trans. Inform. Theory, 48 (2002), 2060-2064.  doi: 10.1109/TIT.2002.1013144.  Google Scholar

[7]

S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.  Google Scholar

[8]

S. T. Dougherty and M. Harada, New extremal self-dual codes of length 68, IEEE Trans. Inform. Theory, 45 (1999), 2133-2136.  doi: 10.1109/18.782158.  Google Scholar

[9]

A. FaldumJ. LafuenteG. Ochoa and W. Willems, Error probabilities for bounded distance decoding, Des. Codes Cryptogr., 40 (2006), 237-252.  doi: 10.1007/s10623-006-0010-x.  Google Scholar

[10]

T. A. Gulliver and M. Harada, Classification of extremal double circulant formally self-dual even codes, Des. Codes Cryptogr., 11 (1997), 25-35.  doi: 10.1023/A:1008206223659.  Google Scholar

[11]

T. A. Gulliver and M. Harada, The existence of a formally self-dual even [70, 35, 14] code, Appl. Math. Lett., 11 (1998), 95-98.  doi: 10.1016/S0893-9659(97)00140-7.  Google Scholar

[12]

T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes Cryptogr., 13 (1998), 257-269.  doi: 10.1023/A:1008249924142.  Google Scholar

[13]

T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74-88, Discrete Math., 306 (2006), 2064-2072.  doi: 10.1016/j.disc.2006.05.004.  Google Scholar

[14]

T. A. Gulliver and M. Harada, On extremal double circulant self-dual codes of lengths 90-96, (submitted), arXiv: 1601.07343. Google Scholar

[15]

M. Harada, An extremal doubly even self-dual code of length 112, Electron. J. Combin. 15(2008), Note 33, 5 pp.  Google Scholar

[16]

M. HaradaT. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to 62, Discrete Math., 188 (1998), 127-136.  doi: 10.1016/S0012-365X(97)00250-1.  Google Scholar

[17]

M. Harada and T. Nishimura, An extremal singly even self-dual code of length 88, Adv. Math. Commun., 1 (2007), 261-267.  doi: 10.3934/amc.2007.1.261.  Google Scholar

[18]

S. K. HoughtenC. W. H. LamL. H. Thiel and J. A. Parker, The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code, IEEE Trans. Inform. Theory, 49 (2003), 53-59.  doi: 10.1109/TIT.2002.806146.  Google Scholar

[19]

W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490.  doi: 10.1016/j.ffa.2005.05.012.  Google Scholar

[20]

W. C. Huffman and V. D. Tonchev, The existence of extremal self-dual [50, 25, 10] codes and quasi-symmetric 2-(49, 9, 6) designs, Des. Codes Cryptogr., 6 (1996), 97-106.  doi: 10.1007/BF01398008.  Google Scholar

[21]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Inform. Control, 22 (1973), 188-200.  doi: 10.1016/S0019-9958(73)90273-8.  Google Scholar

[22]

E. Rains and N. J. A. Sloane, Self-dual codes, Handbook of Coding Theory, V. S. Pless and W. C. Huffman (Editors), Elsevier, Amsterdam, 1998,177-294.  Google Scholar

[23]

R. Russeva and N. Yankov, On binary self-dual codes of lengths 60, 62, 64 and 66 having an automorphism of order 9, Des. Codes Cryptogr., 45 (2007), 335-346.  doi: 10.1007/s10623-007-9127-9.  Google Scholar

[24]

N. J. A. Sloane, Is there a (72, 36) d=16 self-dual code? IEEE Trans. Inform. Theory 19(1973), p251.  Google Scholar

[25]

N. Yankov and M. H. Lee, New binary self-dual codes of lengths 50-60, Des. Codes Cryptogr., 73 (2014), 983-996.  doi: 10.1007/s10623-013-9839-y.  Google Scholar

[26]

N. YankovM. H. LeeM. Gürel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.  Google Scholar

[27]

N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, 57 (2011), 7498-7506.  doi: 10.1109/TIT.2011.2155619.  Google Scholar

Table 1.  Possible weight enumerators $W_{2n, d}$
$(2n,d)$ $A_0$ $A_d$ $A_{d+2}$ $A_{d+4}$ $A_{d+6}$
$(32, 8)$ 1 $a$ $4960-8a$ $-3472+28a$ $34720-56a$
$(34, 8)$ 1 $a$ $4114-7a$ $2516+20a$ $29172-28a$
$(36, 8)$ 1 $a$ $3366-6a$ $6630+13a$ $30600-8a$
$(38, 8)$ 1 $a$ $2717-5a$ $9177+7a$ $35910+5a$
$(40, 8)$ 1 $a$ $-4a+b$ $32110+2a-10b$ $-54720+12a+45b$
$(42,10)$ 1 $a$ $26117-9a$ $-10455+35a$ $286713-75a$
$(44,10)$ 1 $a$ $21021-8a$ $19712+26a$ $250778-40a$
$(46,10)$ 1 $a$ $16744-7a$ $38709+18a$ $249458-14a$
$(48,10)$ 1 $a$ $-6a+b$ $207552+11a-12b$ $-606441+4a+66b$
$(50,10)$ 1 $a$ $-5a+b$ $166600+5a-11b$ $-271950+15a+54b$
$(52,10)$ 1 $a$ $-4a+b$ $132600-10b$ $-41990+20a+43b$
$(54,10)$ 1 $a$ $-3a+b$ $104652-4a-9b$ $107406+20a+33b$
$(56,12)$ 1 $a$ $-8a+b$ $1343034+24a-14b$ $-5765760-24a+91b$
$(58,12)$ 1 $a$ $-7a+b$ $1067838+16a-13b$ $-3224452+77b$
$(60,12)$ 1 $a$ $-6a+b$ $843030+9a-12b$ $-1454640+16a+64b$
$(62,12)$ 1 $a$ $-5a+b$ $660858+3a-11b$ $-270940+25a+52b$
$(64,12)$ 1 $a$ $-4a+b$ $-2a-10b+c$ $8707776+28a+41b-16c$
$(66,12)$ 1 $a$ $-3a+b$ $-6a-9b+c$ $6874010+26a+31b-15c$
$(68,12)$ 1 $a$ $-2a+b$ $-9a-8b+c$ $5393454+20a+22b-14c$
$(70,12)$ 1 $a$ $-a+b$ $-11a-7b+c$ $4206125+11a+14b-13c$
$(72,14)$ 1 $a$ $-6a+b$ $7a-12b+c$ $56583450+28a+62b-18c$
$(2n,d)$ $A_0$ $A_d$ $A_{d+2}$ $A_{d+4}$ $A_{d+6}$
$(32, 8)$ 1 $a$ $4960-8a$ $-3472+28a$ $34720-56a$
$(34, 8)$ 1 $a$ $4114-7a$ $2516+20a$ $29172-28a$
$(36, 8)$ 1 $a$ $3366-6a$ $6630+13a$ $30600-8a$
$(38, 8)$ 1 $a$ $2717-5a$ $9177+7a$ $35910+5a$
$(40, 8)$ 1 $a$ $-4a+b$ $32110+2a-10b$ $-54720+12a+45b$
$(42,10)$ 1 $a$ $26117-9a$ $-10455+35a$ $286713-75a$
$(44,10)$ 1 $a$ $21021-8a$ $19712+26a$ $250778-40a$
$(46,10)$ 1 $a$ $16744-7a$ $38709+18a$ $249458-14a$
$(48,10)$ 1 $a$ $-6a+b$ $207552+11a-12b$ $-606441+4a+66b$
$(50,10)$ 1 $a$ $-5a+b$ $166600+5a-11b$ $-271950+15a+54b$
$(52,10)$ 1 $a$ $-4a+b$ $132600-10b$ $-41990+20a+43b$
$(54,10)$ 1 $a$ $-3a+b$ $104652-4a-9b$ $107406+20a+33b$
$(56,12)$ 1 $a$ $-8a+b$ $1343034+24a-14b$ $-5765760-24a+91b$
$(58,12)$ 1 $a$ $-7a+b$ $1067838+16a-13b$ $-3224452+77b$
$(60,12)$ 1 $a$ $-6a+b$ $843030+9a-12b$ $-1454640+16a+64b$
$(62,12)$ 1 $a$ $-5a+b$ $660858+3a-11b$ $-270940+25a+52b$
$(64,12)$ 1 $a$ $-4a+b$ $-2a-10b+c$ $8707776+28a+41b-16c$
$(66,12)$ 1 $a$ $-3a+b$ $-6a-9b+c$ $6874010+26a+31b-15c$
$(68,12)$ 1 $a$ $-2a+b$ $-9a-8b+c$ $5393454+20a+22b-14c$
$(70,12)$ 1 $a$ $-a+b$ $-11a-7b+c$ $4206125+11a+14b-13c$
$(72,14)$ 1 $a$ $-6a+b$ $7a-12b+c$ $56583450+28a+62b-18c$
Table 2.  Double circulant even codes satisfying (C1)-(C3)
$2n$ $d_{P}$ $A_{d_{P}}$ $N_{P}$ $d_{B}$ $A_{d_{B}}$ $N_{B}$ $d_{SD}$ $A_{d_{SD}}$
32 8 $348$ 2 8 $ 300$ 1 8 364 [5]
34 8 $272$ 15 8 $ 272$ 10 6 -
36 8 $153$ 4 8 $ 153$ 3 8 225 [5]
38 8 $ 76$ 1 8 $ 72$ 1 8 171 [5]
40 8 $ 25$ 1 8 $ 38$ 2 8 125 [5]
42 10 $1680$ 2 10 $1682$ 1 8 -
44 10 $1144$ 1 10 $1267$ 3 8 -
46 10 $851$ 1 10 $ 858$ 2 10 1012 [5]
48 10 $480$ 1 10 $ 575$ 1 12 17296 [5]
50 10 $325$ 1 10 $ 356$ 1 10 196 [20]
52 10 $156$ 1 10 $ 150$ 1 10 250 [5]
54 10 $ 27$ 1 10 $ 52$ 1 10 7-135 [3], [5]
56 12 $4060$ 1 10 $ 3$ 1 12 4606-8190 [5]
58 12 $3161$ 1 12 $3227$ 1 10 -
60 12 $2095$ 1 12 $2146$ 1 12 2555 [23]
62 12 $1333$ 1 12 $1290$ 1 12 1860 [6]
64 12 $544$ 1 12 $806$ 1 12 1312 [4]
66 12 $374$ 1 12 $480$ 1 12 858 [5] (see [7])
68 12 $136$ 1 12 $165$ 1 12 442-486 [7], [26]
70 12 $35$ 1 14 12172 1 12-14 -
72 14 $8064$ 1 14 $8190$ 1 12-16 -
$2n$ $d_{P}$ $A_{d_{P}}$ $N_{P}$ $d_{B}$ $A_{d_{B}}$ $N_{B}$ $d_{SD}$ $A_{d_{SD}}$
32 8 $348$ 2 8 $ 300$ 1 8 364 [5]
34 8 $272$ 15 8 $ 272$ 10 6 -
36 8 $153$ 4 8 $ 153$ 3 8 225 [5]
38 8 $ 76$ 1 8 $ 72$ 1 8 171 [5]
40 8 $ 25$ 1 8 $ 38$ 2 8 125 [5]
42 10 $1680$ 2 10 $1682$ 1 8 -
44 10 $1144$ 1 10 $1267$ 3 8 -
46 10 $851$ 1 10 $ 858$ 2 10 1012 [5]
48 10 $480$ 1 10 $ 575$ 1 12 17296 [5]
50 10 $325$ 1 10 $ 356$ 1 10 196 [20]
52 10 $156$ 1 10 $ 150$ 1 10 250 [5]
54 10 $ 27$ 1 10 $ 52$ 1 10 7-135 [3], [5]
56 12 $4060$ 1 10 $ 3$ 1 12 4606-8190 [5]
58 12 $3161$ 1 12 $3227$ 1 10 -
60 12 $2095$ 1 12 $2146$ 1 12 2555 [23]
62 12 $1333$ 1 12 $1290$ 1 12 1860 [6]
64 12 $544$ 1 12 $806$ 1 12 1312 [4]
66 12 $374$ 1 12 $480$ 1 12 858 [5] (see [7])
68 12 $136$ 1 12 $165$ 1 12 442-486 [7], [26]
70 12 $35$ 1 14 12172 1 12-14 -
72 14 $8064$ 1 14 $8190$ 1 12-16 -
Table 3.  Pure double circulant even codes satisfying (C1)-(C3)
CodeFirst row $d$ $(A_d,A_{d+2},A_{d+4})$
$P_{32,1}$ (1100101100110101) 8 $(348,2176,6272)$
$P_{32,2}$ (1110110100010011) 8 $(348,2176,6272)$
$P_{34,1}$ (11111110001000100) 8 $(272,2210,7956)$
$P_{34,2}$ (11100000111010110) 8 $(272,2210,7956)$
$P_{34,3}$ (11110101101101100) 8 $(272,2210,7956)$
$P_{34,4}$ (11110011101101010) 8 $(272,2210,7956)$
$P_{34,5}$ (10001011101100000) 8 $(272,2210,7956)$
$P_{34,6}$ (10001100110010100) 8 $(272,2210,7956)$
$P_{34,7}$ (11101110110100000) 8 $(272,2210,7956)$
$P_{34,8}$ (10100101100011110) 8 $(272,2210,7956)$
$P_{34,9}$ (10100100110010001) 8 $(272,2210,7956)$
$P_{34,10}$ (10101010011111000) 8 $(272,2210,7956)$
$P_{34,11}$ (10001110000100110) 8 $(272,2210,7956)$
$P_{34,12}$ (11010010010001111) 8 $(272,2210,7956)$
$P_{34,13}$ (10001100001110100) 8 $(272,2210,7956)$
$P_{34,14}$ (11011010100001101) 8 $(272,2210,7956)$
$P_{34,15}$ (11100001101010011) 8 $(272,2210,7956)$
$P_{36,1}$ (101011110110000001) 8 $(153,2448,8619)$
$P_{36,2}$ (111100001000010111) 8 $(153,2448,8619)$
$P_{36,3}$ (100110111010010001) 8 $(153,2448,8619)$
$P_{36,4}$ (100001010110111100) 8 $(153,2448,8619)$
$P_{38}$ (1111000001001010110) 8 $(76,2337,9709)$
$P_{40}$ (10101101111101111000) 8 $(25,2080,10360)$
$P_{42,1}$ (100001101101110010110) 10 $(1680,10997,48345)$
$P_{42,2}$ (101010010101110110111) 10 $(1680,10997,48345)$
$P_{44}$ (1001111111001011011011) 10 $(1144,11869,49456)$
$P_{46}$ (11001011010111100000001) 10 $(851,10787,54027)$
$P_{48}$ (110111000101111101110100) 10 $(480,10384,53664)$
$P_{50}$ (1000100001011001001011101) 10 $(325,8650,55200)$
$P_{52}$ (10001010100011011011000001) 10 $(156,7267,53690)$
$P_{54}$ (111000000011101101100010011) 10 $(27,6030,49545)$
$P_{56}$ (1001100011110101110111110100) 12 $(4060,49420,293874)$
$P_{58}$ (11011000010100000000110011010) 12 $(3161,41412,292407)$
$P_{60}$ (100000101101110000100111010001) 12 $(2095,37320,263205)$
$P_{62}$ (0010100111101100111111010000000) 12 $(1333,30597,254975)$
$P_{64}$ (10101000110010111100110100000000) 12 $(544,34304,115756)$
$P_{66}$ (100100010010000101111011100100000) 12 $(374,20163,203808)$
$P_{68}$ (1001001011010110101010101011000000) 12 $(136,15606,176936)$
$P_{70}$ (01011011100110100101110000110000000) 12 $(35,11550,151130)$
$P_{72}$ (101101101101001101001101111100010000) 14 $(8064,127809,1202464)$
CodeFirst row $d$ $(A_d,A_{d+2},A_{d+4})$
$P_{32,1}$ (1100101100110101) 8 $(348,2176,6272)$
$P_{32,2}$ (1110110100010011) 8 $(348,2176,6272)$
$P_{34,1}$ (11111110001000100) 8 $(272,2210,7956)$
$P_{34,2}$ (11100000111010110) 8 $(272,2210,7956)$
$P_{34,3}$ (11110101101101100) 8 $(272,2210,7956)$
$P_{34,4}$ (11110011101101010) 8 $(272,2210,7956)$
$P_{34,5}$ (10001011101100000) 8 $(272,2210,7956)$
$P_{34,6}$ (10001100110010100) 8 $(272,2210,7956)$
$P_{34,7}$ (11101110110100000) 8 $(272,2210,7956)$
$P_{34,8}$ (10100101100011110) 8 $(272,2210,7956)$
$P_{34,9}$ (10100100110010001) 8 $(272,2210,7956)$
$P_{34,10}$ (10101010011111000) 8 $(272,2210,7956)$
$P_{34,11}$ (10001110000100110) 8 $(272,2210,7956)$
$P_{34,12}$ (11010010010001111) 8 $(272,2210,7956)$
$P_{34,13}$ (10001100001110100) 8 $(272,2210,7956)$
$P_{34,14}$ (11011010100001101) 8 $(272,2210,7956)$
$P_{34,15}$ (11100001101010011) 8 $(272,2210,7956)$
$P_{36,1}$ (101011110110000001) 8 $(153,2448,8619)$
$P_{36,2}$ (111100001000010111) 8 $(153,2448,8619)$
$P_{36,3}$ (100110111010010001) 8 $(153,2448,8619)$
$P_{36,4}$ (100001010110111100) 8 $(153,2448,8619)$
$P_{38}$ (1111000001001010110) 8 $(76,2337,9709)$
$P_{40}$ (10101101111101111000) 8 $(25,2080,10360)$
$P_{42,1}$ (100001101101110010110) 10 $(1680,10997,48345)$
$P_{42,2}$ (101010010101110110111) 10 $(1680,10997,48345)$
$P_{44}$ (1001111111001011011011) 10 $(1144,11869,49456)$
$P_{46}$ (11001011010111100000001) 10 $(851,10787,54027)$
$P_{48}$ (110111000101111101110100) 10 $(480,10384,53664)$
$P_{50}$ (1000100001011001001011101) 10 $(325,8650,55200)$
$P_{52}$ (10001010100011011011000001) 10 $(156,7267,53690)$
$P_{54}$ (111000000011101101100010011) 10 $(27,6030,49545)$
$P_{56}$ (1001100011110101110111110100) 12 $(4060,49420,293874)$
$P_{58}$ (11011000010100000000110011010) 12 $(3161,41412,292407)$
$P_{60}$ (100000101101110000100111010001) 12 $(2095,37320,263205)$
$P_{62}$ (0010100111101100111111010000000) 12 $(1333,30597,254975)$
$P_{64}$ (10101000110010111100110100000000) 12 $(544,34304,115756)$
$P_{66}$ (100100010010000101111011100100000) 12 $(374,20163,203808)$
$P_{68}$ (1001001011010110101010101011000000) 12 $(136,15606,176936)$
$P_{70}$ (01011011100110100101110000110000000) 12 $(35,11550,151130)$
$P_{72}$ (101101101101001101001101111100010000) 14 $(8064,127809,1202464)$
Table 4.  Bordered double circulant even codes satisfying (C1)-(C3)
CodeFirst row $d$ $(A_d,A_{d+2},A_{d+4})$
$B_{32}$ (100101010001111) 8 $(300,2560,4928)$
$B_{34,1}$ (1001101010001101) 8 $(272,2210,7956)$
$B_{34,2}$ (1110111100010110) 8 $(272,2210,7956)$
$B_{34,3}$ (1010100111011101) 8 $(272,2210,7956)$
$B_{34,4}$ (1000110111011110) 8 $(272,2210,7956)$
$B_{34,5}$ (1110010011010001) 8 $(272,2210,7956)$
$B_{34,6}$ (1101101100101000) 8 $(272,2210,7956)$
$B_{34,7}$ (1001001100111010) 8 $(272,2210,7956)$
$B_{34,8}$ (1110000111110110) 8 $(272,2210,7956)$
$B_{34,9}$ (1110000111011110) 8 $(272,2210,7956)$
$B_{34,10}$ (1001010011010011) 8 $(272,2210,7956)$
$B_{36,1}$ (11001011010011101) 8 $(153,2448,8619)$
$B_{36,2}$ (11011100001010111) 8 $(153,2448,8619)$
$B_{36,3}$ (10001000101011011) 8 $(153,2448,8619)$
$B_{38}$ (110000101101101000) 8 $(72,2357,9681)$
$B_{40,1}$ (1100000111101000100) 8 $(38,2014,10526)$
$B_{40,2}$ (1010011001110001110) 8 $(38,2014,10526)$
$B_{42}$ (10011111001111010010) 10 $(1682,10979,48415)$
$B_{44,1}$ (101010000011101100110) 10 $(1267,10885,52654)$
$B_{44,2}$ (111100011011101010111) 10 $(1267,10885,52654)$
$B_{44,3}$ (110000111111101101101) 10 $(1267,10885,52654)$
$B_{46,1}$ (1110100010011100011000) 10 $(858,10738,54153)$
$B_{46,2}$ (1111100111111001000101) 10 $(858,10738,54153)$
$B_{48}$ (11010101000010011100010) 10 $(575,9752,55453)$
$B_{50}$ (111110011001100111100010) 10 $(356,8524,55036)$
$B_{52}$ (1010001000101001100100101) 10 $(150,7375,52850)$
$B_{54}$ (11101011011000000010001110) 10 $(52,5876,50156)$
$B_{56}$ (100111100001001000000100011) 10 $(3,4545,45477)$
$B_{58}$ (1101101000010100111100110111) 12 $(3227,40950,293463)$
$B_{60}$ (11001101111100101010111101100) 12 $(2146,36163,273876)$
$B_{62}$ (110010100011110110110000000000) 12 $(1290,30850,254428)$
$B_{64}$ (1000010101011010011011010000000) 12 $(806,25358,226982)$
$B_{66}$ (10101110111101100111111011010000) 12 $(480,19848,203112)$
$B_{68}$ (100011110101110110010101010100000) 12 $(165,15620,176099)$
$B_{70}$ (1101000101110100101011110000000000) 14 $(12172,147390,1352811)$
$B_{72}$ (10011110101111100101111001110111000) 14 $(8190,126952,1204560)$
CodeFirst row $d$ $(A_d,A_{d+2},A_{d+4})$
$B_{32}$ (100101010001111) 8 $(300,2560,4928)$
$B_{34,1}$ (1001101010001101) 8 $(272,2210,7956)$
$B_{34,2}$ (1110111100010110) 8 $(272,2210,7956)$
$B_{34,3}$ (1010100111011101) 8 $(272,2210,7956)$
$B_{34,4}$ (1000110111011110) 8 $(272,2210,7956)$
$B_{34,5}$ (1110010011010001) 8 $(272,2210,7956)$
$B_{34,6}$ (1101101100101000) 8 $(272,2210,7956)$
$B_{34,7}$ (1001001100111010) 8 $(272,2210,7956)$
$B_{34,8}$ (1110000111110110) 8 $(272,2210,7956)$
$B_{34,9}$ (1110000111011110) 8 $(272,2210,7956)$
$B_{34,10}$ (1001010011010011) 8 $(272,2210,7956)$
$B_{36,1}$ (11001011010011101) 8 $(153,2448,8619)$
$B_{36,2}$ (11011100001010111) 8 $(153,2448,8619)$
$B_{36,3}$ (10001000101011011) 8 $(153,2448,8619)$
$B_{38}$ (110000101101101000) 8 $(72,2357,9681)$
$B_{40,1}$ (1100000111101000100) 8 $(38,2014,10526)$
$B_{40,2}$ (1010011001110001110) 8 $(38,2014,10526)$
$B_{42}$ (10011111001111010010) 10 $(1682,10979,48415)$
$B_{44,1}$ (101010000011101100110) 10 $(1267,10885,52654)$
$B_{44,2}$ (111100011011101010111) 10 $(1267,10885,52654)$
$B_{44,3}$ (110000111111101101101) 10 $(1267,10885,52654)$
$B_{46,1}$ (1110100010011100011000) 10 $(858,10738,54153)$
$B_{46,2}$ (1111100111111001000101) 10 $(858,10738,54153)$
$B_{48}$ (11010101000010011100010) 10 $(575,9752,55453)$
$B_{50}$ (111110011001100111100010) 10 $(356,8524,55036)$
$B_{52}$ (1010001000101001100100101) 10 $(150,7375,52850)$
$B_{54}$ (11101011011000000010001110) 10 $(52,5876,50156)$
$B_{56}$ (100111100001001000000100011) 10 $(3,4545,45477)$
$B_{58}$ (1101101000010100111100110111) 12 $(3227,40950,293463)$
$B_{60}$ (11001101111100101010111101100) 12 $(2146,36163,273876)$
$B_{62}$ (110010100011110110110000000000) 12 $(1290,30850,254428)$
$B_{64}$ (1000010101011010011011010000000) 12 $(806,25358,226982)$
$B_{66}$ (10101110111101100111111011010000) 12 $(480,19848,203112)$
$B_{68}$ (100011110101110110010101010100000) 12 $(165,15620,176099)$
$B_{70}$ (1101000101110100101011110000000000) 14 $(12172,147390,1352811)$
$B_{72}$ (10011110101111100101111001110111000) 14 $(8190,126952,1204560)$
[1]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[4]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[5]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[6]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[7]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[8]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[9]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[12]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[13]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[14]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[15]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[16]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[17]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[20]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (90)
  • HTML views (288)
  • Cited by (2)

Other articles
by authors

[Back to Top]