[1]
|
S. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012), 733-748.
|
[2]
|
S. Ball and J. De Beule, On sets of vectors of a finite vector space in which every subset of basis size is a basis Ⅱ, Des. Codes Cryptography, 65 (2012), 5-14.
doi: 10.1007/s10623-012-9658-6.
|
[3]
|
W.-L. Chow, On the geometry of algebraic homogeneous spaces, Annals of Mathematics. Second Series, 50 (1949), 32-67.
doi: 10.2307/1969351.
|
[4]
|
P. Dembowski, Finite Geometries Springer, 1968.
|
[5]
|
A. Dür, The automorphism groups of Reed-Solomon codes, J. Comb. Theory, Series A, 44 (1987), 69-82.
doi: 10.1016/0097-3165(87)90060-4.
|
[6]
|
D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995.
|
[7]
|
S. R. Ghorpade and G. Lachaud, Hyperplane sections of Grassmannians and the number of MDS linear codes, Finite Fields and Their Applications, 7 (2001), 468-506.
doi: 10.1006/ffta.2000.0299.
|
[8]
|
D. G. Glynn, The non-classical 10-arc of $\mathrm{PG}(4,9)$, Discrete Mathematics, 59 (1986), 43-51.
|
[9]
|
D. G. Glynn, Rings of geometries, Ⅱ, J. Comb. Theory, Series A, 49 (1988), 26-66.
doi: 10.1016/0097-3165(88)90027-1.
|
[10]
|
D. G. Glynn, Every oval of $\text{PG}(2,q)$, $q$ even, is the product of its external lines, Bull. Inst. Combin. Appl., 9 (1993), 65-68.
|
[11]
|
D. G. Glynn, A condition for arcs and MDS codes, Designs Codes and Cryptography, 58 (2011), 215-218.
doi: 10.1007/s10623-010-9404-x.
|
[12]
|
D. G. Glynn, An invariant for hypersurfaces in prime characteristic, SIAM Journal on Discrete Mathematics, 26 (2012), 881-883.
doi: 10.1137/110823274.
|
[13]
|
P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York, 1978.
|
[14]
|
J. Harris, Algebraic Geometry: A First Course, Springer-Verlag, New York, 1995.
|
[15]
|
J. W. P. Hirschfeld,
Finite Projective Spaces of Three Dimensions The Clarendon Press, Oxford University Press, New York, 1985.
|
[16]
|
J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, second edition, 1998.
|
[17]
|
J. W. P. Hirschfeld, G. Korchmaros and F. Torres, Algebraic Curves over a Finite Field, Princeton University Press, Princeton, NJ, 2008.
|
[18]
|
J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Springer Monographs in Mathematics, Springer, London, 2016.
|
[19]
|
A. V. Iampolskda, A. N. Skorobogatov and E. A. Sorokin, Formula for the number of $[9,3]$ MDS codes, IEEE Trans. Inf. Theory, 41 (1995), 1667-1671.
doi: 10.1109/18.476239.
|
[20]
|
K. V. Kaipa, An asymptotic formula in $q$ for the number of $[n,k]$ $q$-ary MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 7047-7057.
doi: 10.1109/TIT.2014.2349903.
|
[21]
|
R. Rolland, The number of MDS $[7,3]$ codes on finite fields of characteristic $2$, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 301-310.
doi: 10.1007/BF01294838.
|
[22]
|
B. Segre, Lectures on Modern Geometry, Edizioni Cremonese, Roma, 1961.
|
[23]
|
R. C. Singleton, Maximum distance $q$-nary codes, IEEE Trans. Information Theory, 10 (1964), 116-118.
|