-
Previous Article
Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$
- AMC Home
- This Issue
-
Next Article
On the performance of optimal double circulant even codes
Counting generalized Reed-Solomon codes
1. | Department of Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet 303B, DK-2800 Kgs. Lyngby, Denmark |
2. | School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia |
3. | Department of Mathematics King Abdulaziz University, Jeddah 21859, Saudi Arabia |
4. | Department of Mathematics, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India |
In this article we count the number of $[n, k]$ generalized Reed-Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of $[n, 3]$ MDS codes with $n=6, 7, 8, 9$.
References:
[1] |
S. Ball,
On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012), 733-748.
|
[2] |
S. Ball and J. De Beule,
On sets of vectors of a finite vector space in which every subset of basis size is a basis Ⅱ, Des. Codes Cryptography, 65 (2012), 5-14.
doi: 10.1007/s10623-012-9658-6. |
[3] |
W.-L. Chow,
On the geometry of algebraic homogeneous spaces, Annals of Mathematics. Second Series, 50 (1949), 32-67.
doi: 10.2307/1969351. |
[4] | |
[5] |
A. Dür,
The automorphism groups of Reed-Solomon codes, J. Comb. Theory, Series A, 44 (1987), 69-82.
doi: 10.1016/0097-3165(87)90060-4. |
[6] |
D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995. |
[7] |
S. R. Ghorpade and G. Lachaud,
Hyperplane sections of Grassmannians and the number of MDS linear codes, Finite Fields and Their Applications, 7 (2001), 468-506.
doi: 10.1006/ffta.2000.0299. |
[8] |
D. G. Glynn,
The non-classical 10-arc of $\mathrm{PG}(4,9)$, Discrete Mathematics, 59 (1986), 43-51.
|
[9] |
D. G. Glynn,
Rings of geometries, Ⅱ, J. Comb. Theory, Series A, 49 (1988), 26-66.
doi: 10.1016/0097-3165(88)90027-1. |
[10] |
D. G. Glynn,
Every oval of $\text{PG}(2,q)$, $q$ even, is the product of its external lines, Bull. Inst. Combin. Appl., 9 (1993), 65-68.
|
[11] |
D. G. Glynn,
A condition for arcs and MDS codes, Designs Codes and Cryptography, 58 (2011), 215-218.
doi: 10.1007/s10623-010-9404-x. |
[12] |
D. G. Glynn,
An invariant for hypersurfaces in prime characteristic, SIAM Journal on Discrete Mathematics, 26 (2012), 881-883.
doi: 10.1137/110823274. |
[13] |
P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York, 1978. |
[14] |
J. Harris, Algebraic Geometry: A First Course, Springer-Verlag, New York, 1995. |
[15] |
J. W. P. Hirschfeld,
Finite Projective Spaces of Three Dimensions The Clarendon Press, Oxford University Press, New York, 1985. |
[16] |
J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, second edition, 1998. |
[17] |
J. W. P. Hirschfeld, G. Korchmaros and F. Torres, Algebraic Curves over a Finite Field, Princeton University Press, Princeton, NJ, 2008. |
[18] |
J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Springer Monographs in Mathematics, Springer, London, 2016. |
[19] |
A. V. Iampolskda, A. N. Skorobogatov and E. A. Sorokin,
Formula for the number of $[9,3]$ MDS codes, IEEE Trans. Inf. Theory, 41 (1995), 1667-1671.
doi: 10.1109/18.476239. |
[20] |
K. V. Kaipa,
An asymptotic formula in $q$ for the number of $[n,k]$ $q$-ary MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 7047-7057.
doi: 10.1109/TIT.2014.2349903. |
[21] |
R. Rolland,
The number of MDS $[7,3]$ codes on finite fields of characteristic $2$, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 301-310.
doi: 10.1007/BF01294838. |
[22] |
B. Segre, Lectures on Modern Geometry, Edizioni Cremonese, Roma, 1961. |
[23] |
R. C. Singleton,
Maximum distance $q$-nary codes, IEEE Trans. Information Theory, 10 (1964), 116-118.
|
show all references
References:
[1] |
S. Ball,
On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012), 733-748.
|
[2] |
S. Ball and J. De Beule,
On sets of vectors of a finite vector space in which every subset of basis size is a basis Ⅱ, Des. Codes Cryptography, 65 (2012), 5-14.
doi: 10.1007/s10623-012-9658-6. |
[3] |
W.-L. Chow,
On the geometry of algebraic homogeneous spaces, Annals of Mathematics. Second Series, 50 (1949), 32-67.
doi: 10.2307/1969351. |
[4] | |
[5] |
A. Dür,
The automorphism groups of Reed-Solomon codes, J. Comb. Theory, Series A, 44 (1987), 69-82.
doi: 10.1016/0097-3165(87)90060-4. |
[6] |
D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995. |
[7] |
S. R. Ghorpade and G. Lachaud,
Hyperplane sections of Grassmannians and the number of MDS linear codes, Finite Fields and Their Applications, 7 (2001), 468-506.
doi: 10.1006/ffta.2000.0299. |
[8] |
D. G. Glynn,
The non-classical 10-arc of $\mathrm{PG}(4,9)$, Discrete Mathematics, 59 (1986), 43-51.
|
[9] |
D. G. Glynn,
Rings of geometries, Ⅱ, J. Comb. Theory, Series A, 49 (1988), 26-66.
doi: 10.1016/0097-3165(88)90027-1. |
[10] |
D. G. Glynn,
Every oval of $\text{PG}(2,q)$, $q$ even, is the product of its external lines, Bull. Inst. Combin. Appl., 9 (1993), 65-68.
|
[11] |
D. G. Glynn,
A condition for arcs and MDS codes, Designs Codes and Cryptography, 58 (2011), 215-218.
doi: 10.1007/s10623-010-9404-x. |
[12] |
D. G. Glynn,
An invariant for hypersurfaces in prime characteristic, SIAM Journal on Discrete Mathematics, 26 (2012), 881-883.
doi: 10.1137/110823274. |
[13] |
P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York, 1978. |
[14] |
J. Harris, Algebraic Geometry: A First Course, Springer-Verlag, New York, 1995. |
[15] |
J. W. P. Hirschfeld,
Finite Projective Spaces of Three Dimensions The Clarendon Press, Oxford University Press, New York, 1985. |
[16] |
J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, second edition, 1998. |
[17] |
J. W. P. Hirschfeld, G. Korchmaros and F. Torres, Algebraic Curves over a Finite Field, Princeton University Press, Princeton, NJ, 2008. |
[18] |
J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Springer Monographs in Mathematics, Springer, London, 2016. |
[19] |
A. V. Iampolskda, A. N. Skorobogatov and E. A. Sorokin,
Formula for the number of $[9,3]$ MDS codes, IEEE Trans. Inf. Theory, 41 (1995), 1667-1671.
doi: 10.1109/18.476239. |
[20] |
K. V. Kaipa,
An asymptotic formula in $q$ for the number of $[n,k]$ $q$-ary MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 7047-7057.
doi: 10.1109/TIT.2014.2349903. |
[21] |
R. Rolland,
The number of MDS $[7,3]$ codes on finite fields of characteristic $2$, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 301-310.
doi: 10.1007/BF01294838. |
[22] |
B. Segre, Lectures on Modern Geometry, Edizioni Cremonese, Roma, 1961. |
[23] |
R. C. Singleton,
Maximum distance $q$-nary codes, IEEE Trans. Information Theory, 10 (1964), 116-118.
|
| |
||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
| |
||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
[1] |
Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 |
[2] |
Antonio Cafure, Guillermo Matera, Melina Privitelli. Singularities of symmetric hypersurfaces and Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (1) : 69-94. doi: 10.3934/amc.2012.6.69 |
[3] |
Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053 |
[4] |
Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005 |
[5] |
José Moreira, Marcel Fernández, Miguel Soriano. On the relationship between the traceability properties of Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (4) : 467-478. doi: 10.3934/amc.2012.6.467 |
[6] |
Can Xiang, Jinquan Luo. Some subfield codes from MDS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021023 |
[7] |
Janne I. Kokkala, Patric R. J. Östergård. Further results on the classification of MDS codes. Advances in Mathematics of Communications, 2016, 10 (3) : 489-498. doi: 10.3934/amc.2016020 |
[8] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021042 |
[9] |
Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041 |
[10] |
Simeon Ball, Guillermo Gamboa, Michel Lavrauw. On additive MDS codes over small fields. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021024 |
[11] |
Martino Borello, Olivier Mila. Symmetries of weight enumerators and applications to Reed-Muller codes. Advances in Mathematics of Communications, 2019, 13 (2) : 313-328. doi: 10.3934/amc.2019021 |
[12] |
José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317 |
[13] |
Anna-Lena Horlemann-Trautmann, Alessandro Neri. A complete classification of partial MDS (maximally recoverable) codes with one global parity. Advances in Mathematics of Communications, 2020, 14 (1) : 69-88. doi: 10.3934/amc.2020006 |
[14] |
Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2020, 14 (3) : 437-453. doi: 10.3934/amc.2020047 |
[15] |
Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005 |
[16] |
Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349 |
[17] |
Ziteng Huang, Weijun Fang, Fang-Wei Fu, Fengting Li. Generic constructions of MDS Euclidean self-dual codes via GRS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021059 |
[18] |
Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010 |
[19] |
Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333 |
[20] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]