November  2017, 11(4): 791-804. doi: 10.3934/amc.2017058

Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$

Department of Mathematics, Bu Ali Sina University, Hamedan, Iran

Received  July 2016 Published  November 2017

The purpose of this paper is to study the structure of quadratic residue codes over the ring $R=\mathbb{F}_{p^r}+u_1\mathbb{F}_{p^r}+u_2 \mathbb{F}_{p^r}+...+u_t \mathbb{F}_{p^r}$, where $r, t ≥ 1$ and $p$ is a prime number. First, we survey known results on quadratic residue codes over the field $\mathbb{F}_{p^r}$ and give general properties with quadratic residue codes over $R$. We introduce the Gray map from $R$ to $\mathbb{F}^{t+1}_{p^r}$ and study more details about the quadratic residue codes over the ring $R$ for $p=2, 3$. Finally, we obtain a number of Hermitian self-dual codes over $R$ in the following two cases, where $t$ is an odd number; the first case, when $p=2$ and $r$ is an even number or $r=1$, the second case, when $p=3$ and $r$ is an even number.

Citation: Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058
References:
[1]

M. H. ChiuS. T. Yau and Y. Yu, $\mathbb{Z}_8$-cyclic codes and quadratic residue codes, Adv. Appl. Math, 25 (2000), 12-33.  doi: 10.1006/aama.2000.0687.  Google Scholar

[2]

S. T. DoughertyJ. L. Kim and H. Kulosman, MDS codes over finite principal ideal rings, Des. Codes Cryptogr, 50 (2009), 77-92.  doi: 10.1007/s10623-008-9215-5.  Google Scholar

[3]

M. Grassl, http://codetables.de, accessed on 04.11.2012. Google Scholar

[4]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes Cambrigde University press, 2003. Google Scholar

[5]

A. KayaB. Yildiz and I. Siap, Quadratic residue codes over $\mathbb{F}_p+v \mathbb{F}_p$ and their Gray images, J. Pure App. Algebra, 218 (2014), 1999-2011.  doi: 10.1016/j.jpaa.2014.03.002.  Google Scholar

[6]

A. KayaB. Yildiz and I. Siap, New extremal binary self-dual codes of length 68 from quadratic residue codes over $\mathbb{F}_2+u \mathbb{F}_2+u^2 \mathbb{F}_2$, Finite Fields Appl, 29 (2014), 160-177.  doi: 10.1016/j.ffa.2014.04.009.  Google Scholar

[7]

V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $Z_4$, IEEE Trans. Inform. Theory, 42 (1996), 1594-1600.  doi: 10.1109/18.532906.  Google Scholar

[8]

K. Samei and A. Soufi, Constacyclic codes over finite principal ideal rings, Submitted. Google Scholar

[9]

K. Samei and A. Soufi, Cyclic codes over $ \mathbb{F}_{2^r} + { u_1} \mathbb{F}_{2^r} +{u_2} \mathbb{F}_{2^r} + . . . +{u_t}\mathbb{F}_ {2^r} $, Submitted. Google Scholar

[10]

M. ShiQ. LiqinL. SokN. Aydin and P. Solé, On constacyclic codes over $ \frac{\mathbb{Z}_{4}[u]}{<u^2-1>}$, Finite Fields Appl, 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators over $ \mathbb{F}_{2} + { v} \mathbb{F}_{2} +{v^2} \mathbb{F}_{2}$, Appl. Comput. Math, 12 (2013), 247-255.   Google Scholar

[12]

M. ShiL. Xu and G. Yang, A note on one weight and two weight projective $ \mathbb{Z}_{4}$-codes, IEEE Trans. Inform. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.  Google Scholar

[13]

M. ShiS. Zhu and S. Yang, A class of optimal $p$-ary codes from one-weight codes over $ \frac{\mathbb{F}_{p}[u]}{<u^m>}$, J. Franklin Inst, 350 (2013), 929-937.  doi: 10.1016/j.jfranklin.2012.05.014.  Google Scholar

[14]

B. Taeri, Quadratic residue codes over $Z_9$, J. Korean Math. Soc., 46 (2009), 13-30.  doi: 10.4134/JKMS.2009.46.1.013.  Google Scholar

[15]

S. X. Zhu and L. Wang, A class of constacyclic codes over $\mathbb{F}_p+v \mathbb{F}_p$ and its Gray image, Discrete Math., 311 (2011), 2677-2682.  doi: 10.1016/j.disc.2011.08.015.  Google Scholar

show all references

References:
[1]

M. H. ChiuS. T. Yau and Y. Yu, $\mathbb{Z}_8$-cyclic codes and quadratic residue codes, Adv. Appl. Math, 25 (2000), 12-33.  doi: 10.1006/aama.2000.0687.  Google Scholar

[2]

S. T. DoughertyJ. L. Kim and H. Kulosman, MDS codes over finite principal ideal rings, Des. Codes Cryptogr, 50 (2009), 77-92.  doi: 10.1007/s10623-008-9215-5.  Google Scholar

[3]

M. Grassl, http://codetables.de, accessed on 04.11.2012. Google Scholar

[4]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes Cambrigde University press, 2003. Google Scholar

[5]

A. KayaB. Yildiz and I. Siap, Quadratic residue codes over $\mathbb{F}_p+v \mathbb{F}_p$ and their Gray images, J. Pure App. Algebra, 218 (2014), 1999-2011.  doi: 10.1016/j.jpaa.2014.03.002.  Google Scholar

[6]

A. KayaB. Yildiz and I. Siap, New extremal binary self-dual codes of length 68 from quadratic residue codes over $\mathbb{F}_2+u \mathbb{F}_2+u^2 \mathbb{F}_2$, Finite Fields Appl, 29 (2014), 160-177.  doi: 10.1016/j.ffa.2014.04.009.  Google Scholar

[7]

V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $Z_4$, IEEE Trans. Inform. Theory, 42 (1996), 1594-1600.  doi: 10.1109/18.532906.  Google Scholar

[8]

K. Samei and A. Soufi, Constacyclic codes over finite principal ideal rings, Submitted. Google Scholar

[9]

K. Samei and A. Soufi, Cyclic codes over $ \mathbb{F}_{2^r} + { u_1} \mathbb{F}_{2^r} +{u_2} \mathbb{F}_{2^r} + . . . +{u_t}\mathbb{F}_ {2^r} $, Submitted. Google Scholar

[10]

M. ShiQ. LiqinL. SokN. Aydin and P. Solé, On constacyclic codes over $ \frac{\mathbb{Z}_{4}[u]}{<u^2-1>}$, Finite Fields Appl, 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators over $ \mathbb{F}_{2} + { v} \mathbb{F}_{2} +{v^2} \mathbb{F}_{2}$, Appl. Comput. Math, 12 (2013), 247-255.   Google Scholar

[12]

M. ShiL. Xu and G. Yang, A note on one weight and two weight projective $ \mathbb{Z}_{4}$-codes, IEEE Trans. Inform. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.  Google Scholar

[13]

M. ShiS. Zhu and S. Yang, A class of optimal $p$-ary codes from one-weight codes over $ \frac{\mathbb{F}_{p}[u]}{<u^m>}$, J. Franklin Inst, 350 (2013), 929-937.  doi: 10.1016/j.jfranklin.2012.05.014.  Google Scholar

[14]

B. Taeri, Quadratic residue codes over $Z_9$, J. Korean Math. Soc., 46 (2009), 13-30.  doi: 10.4134/JKMS.2009.46.1.013.  Google Scholar

[15]

S. X. Zhu and L. Wang, A class of constacyclic codes over $\mathbb{F}_p+v \mathbb{F}_p$ and its Gray image, Discrete Math., 311 (2011), 2677-2682.  doi: 10.1016/j.disc.2011.08.015.  Google Scholar

[1]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[2]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[3]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[4]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[5]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[6]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[7]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020023

[8]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[9]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[10]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[11]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[12]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[13]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[14]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[15]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[16]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[17]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[18]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[19]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020037

[20]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (51)
  • HTML views (593)
  • Cited by (0)

Other articles
by authors

[Back to Top]