February  2018, 12(1): 49-65. doi: 10.3934/amc.2018003

On erasure combinatorial batch codes

Department of Mathematics, Marshall University, Huntington, WV 25755, USA

Received  November 2015 Revised  July 2017 Published  March 2018

Combinatorial batch codes were defined by Paterson, Stinson, and Wei as purely combinatorial versions of the batch codes introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai. There are $n$ items and $m$ servers, each of which stores a subset of the items. A batch code is an arrangement for storing items on servers so that, for prescribed integers $k$ and $t$, any $k$ items can be retrieved by reading at most $t$ items from each server. Silberstein defined an erasure batch code (with redundancy $r$) as a batch code in which any $k$ items can be retrieved by reading at most $t$ items from each server, while any $r$ servers are unavailable (failed).

In this paper, we investigate erasure batch codes with $t = 1$ (each server can read at most one item) in a combinatorial manner. We determine the optimal (minimum) total storage of an erasure batch code for several ranges of parameters. Additionally, we relate optimal erasure batch codes to maximum packings. We also identify a necessary lower bound for the total storage of an erasure batch code, and we relate parameters for which this trivial lower bound is achieved to the existence of graphs with appropriate girth.

Citation: JiYoon Jung, Carl Mummert, Elizabeth Niese, Michael Schroeder. On erasure combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (1) : 49-65. doi: 10.3934/amc.2018003
References:
[1]

E. Abajo and A. Diánez, Graphs with maximum size and lower bounded girth, Appl. Math. Lett., 25 (2012), 575-579.  doi: 10.1016/j.aml.2011.09.062.  Google Scholar

[2]

R. A. BrualdiK. P. KiernanS. A. Meyer and M. W. Schroeder, Combinatorial batch codes and transversal matroids, Adv. Math. Commun., 4 (2010), 419-431.  doi: 10.3934/amc.2010.4.419.  Google Scholar

[3]

C. Bujtás and Z. Tuza, Optimal batch codes: many items or low retrieval requirement, Adv. Math. Commun., 5 (2011), 529-541.  doi: 10.3934/amc.2011.5.529.  Google Scholar

[4]

C. Bujtás and Z. Tuza, Optimal combinatorial batch codes derived from dual systems, Miskolc Math. Notes, 12 (2011), 11-23.   Google Scholar

[5]

C. Bujtás and Z. Tuza, Relaxations of Hall's condition: optimal batch codes with multiple queries, Appl. Anal. Discrete Math., 6 (2012), 72-81.  doi: 10.2298/AADM111130024B.  Google Scholar

[6]

Y. Ishai, E. Kushilevitz, R. Ostrovsky and A. Sahai, Batch codes and their applications, in Proc. 36th Ann. ACM Symp. Theory Comp., ACM, New York, 2004,262–271. doi: 10.1145/1007352.1007396.  Google Scholar

[7]

G. B. Khosrovshahi and R. Laue, t-Designs with t ≥ 3, in Handbook of Combinatorial Designs (eds. C. J. Colbourn and J. H. Dinitz), 2nd edition, Chapman & Hall/CRC, Boca Raton, 2007, 79–100. Google Scholar

[8]

W. H. Mills and R. C. Mullin, Coverings and packings, in Contemporary Design Theory, Wiley, New York, 1992,371–399.  Google Scholar

[9]

M. B. PatersonD. R. Stinson and R. Wei, Combinatorial batch codes, Adv. Math. Commun., 3 (2009), 13-27.  doi: 10.3934/amc.2009.3.13.  Google Scholar

[10]

N. Silberstein, Fractional repetition and erasure batch codes, in Coding Theory and Applications (eds. R. Pinto, P. Rocha Malonek and P. Vettori), Springer, 2015,335–343. doi: 10.1007/978-3-319-17296-5_36.  Google Scholar

[11]

H. Zhang, E. Yaakobi and N. Silberstein, Multiset combinatorial batch codes, in 2017 IEEE Int. Symp. Inf. Theory (ISIT), IEEE, 2017. doi: 10.1109/ISIT.2017.8006916.  Google Scholar

show all references

References:
[1]

E. Abajo and A. Diánez, Graphs with maximum size and lower bounded girth, Appl. Math. Lett., 25 (2012), 575-579.  doi: 10.1016/j.aml.2011.09.062.  Google Scholar

[2]

R. A. BrualdiK. P. KiernanS. A. Meyer and M. W. Schroeder, Combinatorial batch codes and transversal matroids, Adv. Math. Commun., 4 (2010), 419-431.  doi: 10.3934/amc.2010.4.419.  Google Scholar

[3]

C. Bujtás and Z. Tuza, Optimal batch codes: many items or low retrieval requirement, Adv. Math. Commun., 5 (2011), 529-541.  doi: 10.3934/amc.2011.5.529.  Google Scholar

[4]

C. Bujtás and Z. Tuza, Optimal combinatorial batch codes derived from dual systems, Miskolc Math. Notes, 12 (2011), 11-23.   Google Scholar

[5]

C. Bujtás and Z. Tuza, Relaxations of Hall's condition: optimal batch codes with multiple queries, Appl. Anal. Discrete Math., 6 (2012), 72-81.  doi: 10.2298/AADM111130024B.  Google Scholar

[6]

Y. Ishai, E. Kushilevitz, R. Ostrovsky and A. Sahai, Batch codes and their applications, in Proc. 36th Ann. ACM Symp. Theory Comp., ACM, New York, 2004,262–271. doi: 10.1145/1007352.1007396.  Google Scholar

[7]

G. B. Khosrovshahi and R. Laue, t-Designs with t ≥ 3, in Handbook of Combinatorial Designs (eds. C. J. Colbourn and J. H. Dinitz), 2nd edition, Chapman & Hall/CRC, Boca Raton, 2007, 79–100. Google Scholar

[8]

W. H. Mills and R. C. Mullin, Coverings and packings, in Contemporary Design Theory, Wiley, New York, 1992,371–399.  Google Scholar

[9]

M. B. PatersonD. R. Stinson and R. Wei, Combinatorial batch codes, Adv. Math. Commun., 3 (2009), 13-27.  doi: 10.3934/amc.2009.3.13.  Google Scholar

[10]

N. Silberstein, Fractional repetition and erasure batch codes, in Coding Theory and Applications (eds. R. Pinto, P. Rocha Malonek and P. Vettori), Springer, 2015,335–343. doi: 10.1007/978-3-319-17296-5_36.  Google Scholar

[11]

H. Zhang, E. Yaakobi and N. Silberstein, Multiset combinatorial batch codes, in 2017 IEEE Int. Symp. Inf. Theory (ISIT), IEEE, 2017. doi: 10.1109/ISIT.2017.8006916.  Google Scholar

Figure 1.  Ranges of the parameter $n$ addressed here, in terms of $k$, $m$, and $r$, always assuming $t = 1$ and that the conditions of Lemma 3 are met. Theorem 8 applies when $k \leq n \leq m$, and Theorem 9 applies when $n > m$ and $k = m-r$. Theorem 13 applies to certain values of $n$ less than $(k-1)\binom{m}{r+k-1}$, while Theorem 12 applies when $(k-1)\binom{m}{r+k-1} \leq n$. When $n = (k-1)\binom{m}{r+k-1}$, the constructions in the latter two theorems are the same
Figure 2.  The matrix $A$ constructed as in the proof of Theorem 8 for $m = 6, n = 4, r = 3, $ and $k\leq 3$
Figure 3.  The matrix $A$ constructed as in the proof of Theorem 9 when $m = 6, n = 7, r = 3, $ and $k = 3$
Figure 4.  The matrix $A$ constructed as in the proof of Theorem 12 when $m = 4, k = 2, r = 1, $ and $n = 8\geq (k-1)\binom{m}{r+k-1}$
Figure 5.  A $1-\text{ECBC}(6, 3, 5)$ illustrating that $F(3, 5, 1)\geq 6$. See Example 18
Figure 6.  A maximal 2-(5, 3, 2) packing design
Figure 7.  (a) a 1-ECBC(7, 3, 6) achieving minimal weight 14 and (b) its corresponding graph outlined in Theorem 28
[1]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[2]

M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13

[3]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[4]

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Combinatorial batch codes and transversal matroids. Advances in Mathematics of Communications, 2010, 4 (3) : 419-431. doi: 10.3934/amc.2010.4.419

[5]

Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003

[6]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[7]

Yuebo Shen, Dongdong Jia, Gengsheng Zhang. The results on optimal values of some combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (4) : 681-690. doi: 10.3934/amc.2018040

[8]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[9]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[10]

Sergio R. López-Permouth, Benigno R. Parra-Avila, Steve Szabo. Dual generalizations of the concept of cyclicity of codes. Advances in Mathematics of Communications, 2009, 3 (3) : 227-234. doi: 10.3934/amc.2009.3.227

[11]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[12]

Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

[13]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020023

[14]

Csilla Bujtás, Zsolt Tuza. Optimal batch codes: Many items or low retrieval requirement. Advances in Mathematics of Communications, 2011, 5 (3) : 529-541. doi: 10.3934/amc.2011.5.529

[15]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[16]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[17]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[18]

Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273

[19]

David Clark, Vladimir D. Tonchev. A new class of majority-logic decodable codes derived from polarity designs. Advances in Mathematics of Communications, 2013, 7 (2) : 175-186. doi: 10.3934/amc.2013.7.175

[20]

Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (42)
  • HTML views (113)
  • Cited by (0)

[Back to Top]