February  2018, 12(1): 67-79. doi: 10.3934/amc.2018004

Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation

1. 

Provincial Key Laboratory of Information Coding and Transmission, Institute of Mobile Communications, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. 

School of Transportation And Logistics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

* Corresponding author: Hongbin Liang

Received  March 2016 Revised  January 2017 Published  March 2018

In practice, when a frequency-hopping sequence (FHS) set is applied in a frequency-hopping multiple-access (FHMA) system, its periodic partial Hamming correlation (PPHC) rather than its periodic Hamming correlation (PHC) within the whole period is used to evaluate the system performance. Moreover, FHS sets with low hit zone (LHZ) can be well applied in quasi-synchronous (QS) FHMA systems in which some relative time delay among different users within a zone around the origin can be allowed. Therefore, it is very urgent to conduct research on LHZ FHS sets with optimal PPHC property in depth. In this paper, we first derive a new tighter lower bound on the maximum PPHC of an LHZ FHS set. Then we present a new class of optimal one-coincidence FHS sets. Finally we have a construction of LHZ FHS sets which can be optimal with respect to our new lower bound.

Citation: Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004
References:
[1]

D. Aifindel, Specification of the Bluetooth Systems-Core. The Bluetooth Special Interest Group (SIG), available online at http://www.bluetooth.comGoogle Scholar

[2]

H. CaiY. YangZ. C. Zhou and X. H. Tang, Strictly optimal frequency-hopping sequence sets with optimal family size, IEEE Trans. Inf. Theory, 62 (2016), 1087-1093. Google Scholar

[3]

H. CaiZ. C. ZhouY. Yang and X. H. Tang, A new construction of frequency-hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790. Google Scholar

[4]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141. Google Scholar

[5]

J. H. Chung and K. Yang, Low-hit-zone frequency-hopping sequence sets with new parameters, in SETA 2012, 2012,202-211. Google Scholar

[6]

J. H. Chung and K. Yang, New classes of optimal low-hit-zone frequency-hopping sequence sets by Cartesian product, IEEE Trans. Inf. Theory, 59 (2013), 726-732. Google Scholar

[7]

P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, Wiley, London, 1996.Google Scholar

[8]

S. W. Golomb and G. Gong, Signal Design for Good Correlation: for Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, Cambridge, 2005. Google Scholar

[9]

H. Y. Han, D. Y. Peng and X. Liu, On low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation, in SETA 2014, 2014,293-304. Google Scholar

[10]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94. Google Scholar

[11]

X. LiuD. Y. Peng and H. Y. Han, Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties, Des. Codes Crypt., 73 (2013), 167-176. Google Scholar

[12]

W. P. Ma and S. Sun, New designs of frequency hopping sequences with low hit zone, IEICE Trans. Fund., 60 (2011), 145-153. Google Scholar

[13]

X. H. NiuD. Y. PengF. Liu and X. Liu, Lower bounds on the maximum partial correlations of frequency hopping sequence set with low hit zone, IEICE Trans. Fund., E93-A (2010), 2227-2231. Google Scholar

[14]

X. H. NiuD. Y. Peng and Z. C. Zhou, New classes of optimal low hit zone frequency hopping sequences with new parameters by interleaving technique, IEICE Trans. Fund. Electr. Commun. Comp. Sci., 95 (2012), 1835-1842. Google Scholar

[15]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154. Google Scholar

[16]

D. Y. PengP. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone, Sci. China, 49 (2006), 208-218. Google Scholar

[17]

C. Y. WangD. Y. PengH. Y. Han and L. M. N. Zhou, New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation, Sci. China Inf. Sci., 58 (2015), 1-15. Google Scholar

[18]

Z. C. ZhouX. H. Tang and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458. Google Scholar

show all references

References:
[1]

D. Aifindel, Specification of the Bluetooth Systems-Core. The Bluetooth Special Interest Group (SIG), available online at http://www.bluetooth.comGoogle Scholar

[2]

H. CaiY. YangZ. C. Zhou and X. H. Tang, Strictly optimal frequency-hopping sequence sets with optimal family size, IEEE Trans. Inf. Theory, 62 (2016), 1087-1093. Google Scholar

[3]

H. CaiZ. C. ZhouY. Yang and X. H. Tang, A new construction of frequency-hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790. Google Scholar

[4]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141. Google Scholar

[5]

J. H. Chung and K. Yang, Low-hit-zone frequency-hopping sequence sets with new parameters, in SETA 2012, 2012,202-211. Google Scholar

[6]

J. H. Chung and K. Yang, New classes of optimal low-hit-zone frequency-hopping sequence sets by Cartesian product, IEEE Trans. Inf. Theory, 59 (2013), 726-732. Google Scholar

[7]

P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, Wiley, London, 1996.Google Scholar

[8]

S. W. Golomb and G. Gong, Signal Design for Good Correlation: for Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, Cambridge, 2005. Google Scholar

[9]

H. Y. Han, D. Y. Peng and X. Liu, On low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation, in SETA 2014, 2014,293-304. Google Scholar

[10]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94. Google Scholar

[11]

X. LiuD. Y. Peng and H. Y. Han, Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties, Des. Codes Crypt., 73 (2013), 167-176. Google Scholar

[12]

W. P. Ma and S. Sun, New designs of frequency hopping sequences with low hit zone, IEICE Trans. Fund., 60 (2011), 145-153. Google Scholar

[13]

X. H. NiuD. Y. PengF. Liu and X. Liu, Lower bounds on the maximum partial correlations of frequency hopping sequence set with low hit zone, IEICE Trans. Fund., E93-A (2010), 2227-2231. Google Scholar

[14]

X. H. NiuD. Y. Peng and Z. C. Zhou, New classes of optimal low hit zone frequency hopping sequences with new parameters by interleaving technique, IEICE Trans. Fund. Electr. Commun. Comp. Sci., 95 (2012), 1835-1842. Google Scholar

[15]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154. Google Scholar

[16]

D. Y. PengP. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone, Sci. China, 49 (2006), 208-218. Google Scholar

[17]

C. Y. WangD. Y. PengH. Y. Han and L. M. N. Zhou, New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation, Sci. China Inf. Sci., 58 (2015), 1-15. Google Scholar

[18]

Z. C. ZhouX. H. Tang and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458. Google Scholar

Table 1.  Comparison of parameters of some LHZ FHS sets with optimal PPHC property
Parameters $(L, N, r, W, L_{pz}, H_{pzm}(S;W))$ Constrains Ref.
$(j_1L_1, k_1N_1, r_1, W_2, z_1-1, \Big\lceil\frac{W_2}{T_1}\Big\rceil)$ $k_1z_1=L_1$, $\gcd(z_1+1,T_1)=1$, $j_1(z_1+1)\equiv 1 (\mod L_1)$, $j_1=\lambda z_1+1$, $\lambda\geq 1$ [11]
$(lL_2, N_2, r_2, W_3, L_2-1, \gamma)$ $l>0$ [9]
$(L_3L_4, p_4, p_3p_4, W_6, \min\{L_3,L_4\}-1, \Big\lceil\frac{W_6}{T_3L_4}\Big\rceil)$ $\gcd(L_3,L_4)=1$, $p_3(\frac{L_3}{T_3}-1+\eta)(\min\{L_3,L_4\}p_4-1)=L_3L_4(\min\{L_3,L_4\}-p_3)$, $0<\eta\leq1$ [17]
$(pq(q^m-1), pq^{m-1}, pq^m, W,$ $\min\{p,q(q^m-1)\}-1,$ $\Big\lceil\frac{W}{p(q^m-1)}\Big\rceil)$ $pq^{m+1}+p^2-pq-q-p^2q^{m-1}+1<0$ if $p=\min\{p,q(q^m-1)\}$ This paper
Parameters $(L, N, r, W, L_{pz}, H_{pzm}(S;W))$ Constrains Ref.
$(j_1L_1, k_1N_1, r_1, W_2, z_1-1, \Big\lceil\frac{W_2}{T_1}\Big\rceil)$ $k_1z_1=L_1$, $\gcd(z_1+1,T_1)=1$, $j_1(z_1+1)\equiv 1 (\mod L_1)$, $j_1=\lambda z_1+1$, $\lambda\geq 1$ [11]
$(lL_2, N_2, r_2, W_3, L_2-1, \gamma)$ $l>0$ [9]
$(L_3L_4, p_4, p_3p_4, W_6, \min\{L_3,L_4\}-1, \Big\lceil\frac{W_6}{T_3L_4}\Big\rceil)$ $\gcd(L_3,L_4)=1$, $p_3(\frac{L_3}{T_3}-1+\eta)(\min\{L_3,L_4\}p_4-1)=L_3L_4(\min\{L_3,L_4\}-p_3)$, $0<\eta\leq1$ [17]
$(pq(q^m-1), pq^{m-1}, pq^m, W,$ $\min\{p,q(q^m-1)\}-1,$ $\Big\lceil\frac{W}{p(q^m-1)}\Big\rceil)$ $pq^{m+1}+p^2-pq-q-p^2q^{m-1}+1<0$ if $p=\min\{p,q(q^m-1)\}$ This paper
[1]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[2]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[3]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[4]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[5]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[6]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[7]

Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049

[8]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[9]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[10]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[11]

Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003

[12]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[13]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[14]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[15]

Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037

[16]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[17]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[18]

Shuangliang Tian, Ping Chen, Yabin Shao, Qian Wang. Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 49-58. doi: 10.3934/naco.2014.4.49

[19]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[20]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (47)
  • HTML views (137)
  • Cited by (0)

[Back to Top]