February  2018, 12(1): 123-141. doi: 10.3934/amc.2018008

Trace description and Hamming weights of irreducible constacyclic codes

1. 

Department of Mathematics, IIIT-Delhi, New Delhi, 110020, India

2. 

Department of Mathematics, IIT Delhi, New Delhi, 110016, India

* Corresponding author: Anuradha Sharma.

Received  October 2016 Published  March 2018

Irreducible constacyclic codes constitute an important family of error-correcting codesand have applications in space communications.In this paper, we provide a trace description of irreducible constacyclic codes of length $n$ over the finite field $\mathbb{F}_{q}$ of order $q,$ where $n$ is a positive integer and $q$ is a prime power coprime to $n.$ As an application, we determine Hamming weight distributions of some irreducible constacyclic codes of length $n$ over $\mathbb{F}_{q}.$ We also derive a weight-divisibility theorem for irreducible constacyclic codes, and obtain both lower and upper bounds on the non-zero Hamming weights in irreducible constacyclic codes. Besides illustrating our results with examples, we list some optimal irreducible constacyclic codes that attain the distance bounds given in Grassl's Table [8].

Citation: Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008
References:
[1] Y. Aubry and P. Langevin, On the weights of binary irreducible cyclic codes, Proc. Workshop Coding Cryptogr., Norway, 2015.
[2]

L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. Control, 20 (1972), 158-175.

[3]

L. D. Baumert and J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, JPL Tech. Rep. 32-1526, 16 (1973), 128-131.

[4]

B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons Inc., New York, 1998.

[5]

C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.

[6]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.

[7]

X. Dong and S. Yin, The trace representation of $λ$-constacyclic codes over the finite field $\mathbb F_q$, J. Liaoning Normal Univ.(Nat. Sci. ed.), 33 (2010), 129-131.

[8]

M. Grassl, Code Tables: Bounds on the Parameters of Various Types of Codes, available at www.codetables.de

[9]

P. Grover and A. K. Bhandari, A note on the weight distribution of minimal constacyclic codes, Bull. Malaysian Math. Sci. Soc., 39 (2016), 689-697. doi: 10.1007/s40840-015-0134-0.

[10]

S. J. Gurak, Period polynomials for $\mathbb F_q$ of fixed small degree, CRM Proc. Lect. Notes, 36 (2004), 127-145.

[11]

T. HellesethT. Kløve and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block length $n_1((q^{\ell}-1)/N)$, Discrete Math., 18 (1977), 179-211.

[12]

A. Hoshi, Explicit lifts of quantic Jacobi sums and period polynomials for $\mathbb F_q$, Proc. Japan Acad., 82 (2006), 87-92.

[13]

P. Langevin, A new class of two weight codes, in Proc. 3rd Int. Conf. Finite Fields Appl., Cambridge Univ. Press, 1996, 181–187.

[14]

F. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes, IEEE Trans. Inf. Theory, 27 (1981), 796-806.

[15]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publ. Co., Amsterdam, 1977.

[16]

M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45 (1999), 1244-1249.

[17]

G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264.

[18]

B. Schmidt and C. White, All two-weight irreducible cyclic codes?, Finite Fields Appl., 8 (2002), 1-17.

[19]

A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields Appl., 18 (2012), 144-159.

[20]

A. SharmaG. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$, Finite Fields Appl., 13 (2007), 1086-1095.

[21]

A. Sharma and A. K. Sharma, A note on weight distributions of irreducible cyclic codes, Discrete Math. Algor. Appl. 6 (2014), 17 pages. doi: 10.1142/S1793830914500414.

[22]

Y. Song and Z. Li, The weight enumerator of some irreducible cyclic codes, preprint, arXiv: 1202.2907v1

[23]

T. Storer, Cyclotomy and Difference Sets, Markham Publ. Company, Chicago, 1967.

[24]

C. Tang, Y. Qi, M. Xu, B. Wang and Y. Yang, A note on weight distributions of irreducible cyclic codes, in Proc. Int. Conf. Inform. Commun. Tech. (ICT) 2014. doi: 10.1049/cp.2014.0606.

[25]

J. Yang and L. Xia, Complete solving of explicit evaluation of Gauss sums in the index 2 case, Sci. China Math., 53 (2010), 2525-2542.

show all references

References:
[1] Y. Aubry and P. Langevin, On the weights of binary irreducible cyclic codes, Proc. Workshop Coding Cryptogr., Norway, 2015.
[2]

L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. Control, 20 (1972), 158-175.

[3]

L. D. Baumert and J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, JPL Tech. Rep. 32-1526, 16 (1973), 128-131.

[4]

B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons Inc., New York, 1998.

[5]

C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.

[6]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.

[7]

X. Dong and S. Yin, The trace representation of $λ$-constacyclic codes over the finite field $\mathbb F_q$, J. Liaoning Normal Univ.(Nat. Sci. ed.), 33 (2010), 129-131.

[8]

M. Grassl, Code Tables: Bounds on the Parameters of Various Types of Codes, available at www.codetables.de

[9]

P. Grover and A. K. Bhandari, A note on the weight distribution of minimal constacyclic codes, Bull. Malaysian Math. Sci. Soc., 39 (2016), 689-697. doi: 10.1007/s40840-015-0134-0.

[10]

S. J. Gurak, Period polynomials for $\mathbb F_q$ of fixed small degree, CRM Proc. Lect. Notes, 36 (2004), 127-145.

[11]

T. HellesethT. Kløve and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block length $n_1((q^{\ell}-1)/N)$, Discrete Math., 18 (1977), 179-211.

[12]

A. Hoshi, Explicit lifts of quantic Jacobi sums and period polynomials for $\mathbb F_q$, Proc. Japan Acad., 82 (2006), 87-92.

[13]

P. Langevin, A new class of two weight codes, in Proc. 3rd Int. Conf. Finite Fields Appl., Cambridge Univ. Press, 1996, 181–187.

[14]

F. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes, IEEE Trans. Inf. Theory, 27 (1981), 796-806.

[15]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publ. Co., Amsterdam, 1977.

[16]

M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45 (1999), 1244-1249.

[17]

G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264.

[18]

B. Schmidt and C. White, All two-weight irreducible cyclic codes?, Finite Fields Appl., 8 (2002), 1-17.

[19]

A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields Appl., 18 (2012), 144-159.

[20]

A. SharmaG. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$, Finite Fields Appl., 13 (2007), 1086-1095.

[21]

A. Sharma and A. K. Sharma, A note on weight distributions of irreducible cyclic codes, Discrete Math. Algor. Appl. 6 (2014), 17 pages. doi: 10.1142/S1793830914500414.

[22]

Y. Song and Z. Li, The weight enumerator of some irreducible cyclic codes, preprint, arXiv: 1202.2907v1

[23]

T. Storer, Cyclotomy and Difference Sets, Markham Publ. Company, Chicago, 1967.

[24]

C. Tang, Y. Qi, M. Xu, B. Wang and Y. Yang, A note on weight distributions of irreducible cyclic codes, in Proc. Int. Conf. Inform. Commun. Tech. (ICT) 2014. doi: 10.1049/cp.2014.0606.

[25]

J. Yang and L. Xia, Complete solving of explicit evaluation of Gauss sums in the index 2 case, Sci. China Math., 53 (2010), 2525-2542.

Table 1.  Weight distribution of the $q$-ary code $\mathcal{M}_1^{(m,i)}$
$\boldsymbol{q}$ $\boldsymbol{m}$ $\boldsymbol{k}$ $\boldsymbol{i}$ $\boldsymbol{L}$ $^1\textbf{Weight distribution of the $\boldsymbol{q}$-ary code $\mathcal{M}_1^{(m,i)}$}$
5 78 4 1 2 $\mathbb{A}_0=1, \mathbb{A}_{60}=\mathbb{A}_{65}=312$
7 6536 6 5 3 $\mathbb{A}_{0}=1, \mathbb{A}_{5572}=\mathbb{A}_{5628}=\mathbb{A}_{5607}=39216$
13 33988780 8 2 4 $\mathbb{A}_{0}=1, \mathbb{A}_{31376904}=\mathbb{A}_{31373810}=\mathbb{A}_{31374720}$
$ =\mathbb{A}_{31371600}=203932680 $
25 6781684 6 2 3 $\mathbb{A}_{0}=1, \mathbb{A}_{6510000}=162760416, \mathbb{A}_{6511250}=81380208$
4 21 3 2 1 $\mathbb{A}_{0}=1, \mathbb{A}_{16}=63$
7 600 4 3 2 $\mathbb{A}_0=1, \mathbb{A}_{504}=\mathbb{A}_{525}=1200$
3 20 4 1 2 $\mathbb{A}_0=1, \mathbb{A}_{12}=40, \mathbb{A}_{15}=40$
3 182 6 1 2 $\mathbb{A}_0=1, \mathbb{A}_{117}=364, \mathbb{A}_{126}=364$
3 1640 8 1 2 $\mathbb{A}_0=1, \mathbb{A}_{1080}=3280, \mathbb{A}_{1107}=3280$
3 14762 10 1 2 $\mathbb{A}_0=1, \mathbb{A}_{9801}=29524, \mathbb{A}_{9882}=29524$
4 29127 9 2 3 $\mathbb{A}_0=1, \mathbb{A}_{21760}=87381, \mathbb{A}_{21888}=174762$
4 21 3 2 1 $\mathbb{A}_0=1, \mathbb{A}_{16}=63$
5 97656 8 2 2 $\mathbb{A}_0=1, \mathbb{A}_{78000}=195312, \mathbb{A}_{78250}=195312$
7 29412 6 3 2 $\mathbb{A}_0=1, \mathbb{A}_{25137}=58824, \mathbb{A}_{25284}=58824$
7 1441200 8 3 2 $\mathbb{A}_0=1, \mathbb{A}_{1234800}=2882400, \mathbb{A}_{1235829}=2882400$
7 23539604 10 1 2 $\mathbb{A}_0=1, \mathbb{A}_{20175603}=141237624, \mathbb{A}_{20178004}=141237624$
7 12 2 3 2 $\mathbb{A}_0=1, \mathbb{A}_{9}=24, \mathbb{A}_{12}=24$
7 57 3 0 3 $\mathbb{A}_0=1, \mathbb{A}_{45}=114, \mathbb{A}_{48}=114, \mathbb{A}_{54}=114$
7 19 3 4 3 $\mathbb{A}_0=1, \mathbb{A}_{15}=114, \mathbb{A}_{16}=114, \mathbb{A}_{18}=114$
7 57 3 5 1 $\mathbb{A}_0=1, \mathbb{A}_{49}=342 $
7 400 4 1 1 $\mathbb{A}_0=1, \mathbb{A}_{343}=2400$
7 19608 6 3 3 $\mathbb{A}_0=1, \mathbb{A}_{16716}=39216, \mathbb{A}_{16821}=39216,$ $\mathbb{A}_{16884}=39216$
7 13072 6 4 3 $\mathbb{A}_0=1, \mathbb{A}_{11144}=39216, \mathbb{A}_{11256}=39216,$ $\mathbb{A}_{11214}=39216$
9 820 4 2 2 $\mathbb{A}_0=1, \mathbb{A}_{720}=3280, \mathbb{A}_{738}=3280$
9 2690420 8 7 2 $\mathbb{A}_0=1, \mathbb{A}_{2391120}=21523360, \mathbb{A}_{2391849}=21523360$
9 1345210 8 3 4 $\mathbb{A}_0=1, \mathbb{A}_{1195560}=32285040, \mathbb{A}_{1196289}=10761680$
13 134078 6 1 3 $\mathbb{A}_0=1, \mathbb{A}_{123669}=1608936, \mathbb{A}_{123760}=1608936,$
$\mathbb{A}_{123864}=1608936$
13 16994390 8 5 4 $\mathbb{A}_0=1, \mathbb{A}_{15688452}=203932680, \mathbb{A}_{15686905}=203932680,$
$ \mathbb{A}_{15687360}=203932680, \mathbb{A}_{15685800}=203932680$
13 1190 4 6 4 $\mathbb{A}_0=1, \mathbb{A}_{1100}=7140, \mathbb{A}_{1104}=7140, \mathbb{A}_{1110}=7140, $
$\mathbb{A}_{1080}=7140$
16 273 3 4 1 $\mathbb{A}_0=1, \mathbb{A}_{256}=4095$
19 60 2 15 1 $\mathbb{A}_0=1, \mathbb{A}_{57}=360$
25 651 3 16 1 $\mathbb{A}_0=1, \mathbb{A}_{625}=15624$
25 10172526 6 3 3 $\mathbb{A}_0=1, \mathbb{A}_{9765000}=162760416, \mathbb{A}_{9766875}=81380208$
$\boldsymbol{q}$ $\boldsymbol{m}$ $\boldsymbol{k}$ $\boldsymbol{i}$ $\boldsymbol{L}$ $^1\textbf{Weight distribution of the $\boldsymbol{q}$-ary code $\mathcal{M}_1^{(m,i)}$}$
5 78 4 1 2 $\mathbb{A}_0=1, \mathbb{A}_{60}=\mathbb{A}_{65}=312$
7 6536 6 5 3 $\mathbb{A}_{0}=1, \mathbb{A}_{5572}=\mathbb{A}_{5628}=\mathbb{A}_{5607}=39216$
13 33988780 8 2 4 $\mathbb{A}_{0}=1, \mathbb{A}_{31376904}=\mathbb{A}_{31373810}=\mathbb{A}_{31374720}$
$ =\mathbb{A}_{31371600}=203932680 $
25 6781684 6 2 3 $\mathbb{A}_{0}=1, \mathbb{A}_{6510000}=162760416, \mathbb{A}_{6511250}=81380208$
4 21 3 2 1 $\mathbb{A}_{0}=1, \mathbb{A}_{16}=63$
7 600 4 3 2 $\mathbb{A}_0=1, \mathbb{A}_{504}=\mathbb{A}_{525}=1200$
3 20 4 1 2 $\mathbb{A}_0=1, \mathbb{A}_{12}=40, \mathbb{A}_{15}=40$
3 182 6 1 2 $\mathbb{A}_0=1, \mathbb{A}_{117}=364, \mathbb{A}_{126}=364$
3 1640 8 1 2 $\mathbb{A}_0=1, \mathbb{A}_{1080}=3280, \mathbb{A}_{1107}=3280$
3 14762 10 1 2 $\mathbb{A}_0=1, \mathbb{A}_{9801}=29524, \mathbb{A}_{9882}=29524$
4 29127 9 2 3 $\mathbb{A}_0=1, \mathbb{A}_{21760}=87381, \mathbb{A}_{21888}=174762$
4 21 3 2 1 $\mathbb{A}_0=1, \mathbb{A}_{16}=63$
5 97656 8 2 2 $\mathbb{A}_0=1, \mathbb{A}_{78000}=195312, \mathbb{A}_{78250}=195312$
7 29412 6 3 2 $\mathbb{A}_0=1, \mathbb{A}_{25137}=58824, \mathbb{A}_{25284}=58824$
7 1441200 8 3 2 $\mathbb{A}_0=1, \mathbb{A}_{1234800}=2882400, \mathbb{A}_{1235829}=2882400$
7 23539604 10 1 2 $\mathbb{A}_0=1, \mathbb{A}_{20175603}=141237624, \mathbb{A}_{20178004}=141237624$
7 12 2 3 2 $\mathbb{A}_0=1, \mathbb{A}_{9}=24, \mathbb{A}_{12}=24$
7 57 3 0 3 $\mathbb{A}_0=1, \mathbb{A}_{45}=114, \mathbb{A}_{48}=114, \mathbb{A}_{54}=114$
7 19 3 4 3 $\mathbb{A}_0=1, \mathbb{A}_{15}=114, \mathbb{A}_{16}=114, \mathbb{A}_{18}=114$
7 57 3 5 1 $\mathbb{A}_0=1, \mathbb{A}_{49}=342 $
7 400 4 1 1 $\mathbb{A}_0=1, \mathbb{A}_{343}=2400$
7 19608 6 3 3 $\mathbb{A}_0=1, \mathbb{A}_{16716}=39216, \mathbb{A}_{16821}=39216,$ $\mathbb{A}_{16884}=39216$
7 13072 6 4 3 $\mathbb{A}_0=1, \mathbb{A}_{11144}=39216, \mathbb{A}_{11256}=39216,$ $\mathbb{A}_{11214}=39216$
9 820 4 2 2 $\mathbb{A}_0=1, \mathbb{A}_{720}=3280, \mathbb{A}_{738}=3280$
9 2690420 8 7 2 $\mathbb{A}_0=1, \mathbb{A}_{2391120}=21523360, \mathbb{A}_{2391849}=21523360$
9 1345210 8 3 4 $\mathbb{A}_0=1, \mathbb{A}_{1195560}=32285040, \mathbb{A}_{1196289}=10761680$
13 134078 6 1 3 $\mathbb{A}_0=1, \mathbb{A}_{123669}=1608936, \mathbb{A}_{123760}=1608936,$
$\mathbb{A}_{123864}=1608936$
13 16994390 8 5 4 $\mathbb{A}_0=1, \mathbb{A}_{15688452}=203932680, \mathbb{A}_{15686905}=203932680,$
$ \mathbb{A}_{15687360}=203932680, \mathbb{A}_{15685800}=203932680$
13 1190 4 6 4 $\mathbb{A}_0=1, \mathbb{A}_{1100}=7140, \mathbb{A}_{1104}=7140, \mathbb{A}_{1110}=7140, $
$\mathbb{A}_{1080}=7140$
16 273 3 4 1 $\mathbb{A}_0=1, \mathbb{A}_{256}=4095$
19 60 2 15 1 $\mathbb{A}_0=1, \mathbb{A}_{57}=360$
25 651 3 16 1 $\mathbb{A}_0=1, \mathbb{A}_{625}=15624$
25 10172526 6 3 3 $\mathbb{A}_0=1, \mathbb{A}_{9765000}=162760416, \mathbb{A}_{9766875}=81380208$
Table 2.  Some examples of optimal irreducible constacyclic codes $\mathcal{M}_1^{(m,i)}$ over $\mathbb{F}_{q}$
$\boldsymbol{q}$ $\boldsymbol{m}$ $\boldsymbol{k}$ $\boldsymbol{i}$ $\boldsymbol{L}$ $\boldsymbol{d}$
3 20 4 1 2 12
4 21 3 2 1 16
4 7 3 0 3 4
5 78 4 3 2 60
5 6 2 3 1 5
7 4 2 5 2 3
7 57 3 5 1 49
7 8 2 5 1 7
7 19 3 4 3 15
9 5 2 5 2 4
$\boldsymbol{q}$ $\boldsymbol{m}$ $\boldsymbol{k}$ $\boldsymbol{i}$ $\boldsymbol{L}$ $\boldsymbol{d}$
3 20 4 1 2 12
4 21 3 2 1 16
4 7 3 0 3 4
5 78 4 3 2 60
5 6 2 3 1 5
7 4 2 5 2 3
7 57 3 5 1 49
7 8 2 5 1 7
7 19 3 4 3 15
9 5 2 5 2 4
[1]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[2]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[3]

Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277

[4]

Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341

[5]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[6]

Tongjiang Yan, Yanyan Liu, Yuhua Sun. Cyclic codes from two-prime generalized cyclotomic sequences of order 6. Advances in Mathematics of Communications, 2016, 10 (4) : 707-723. doi: 10.3934/amc.2016036

[7]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[8]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[9]

David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401

[10]

Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021

[11]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[12]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[13]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[14]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[15]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[16]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[17]

B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037

[18]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[19]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[20]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (52)
  • HTML views (201)
  • Cited by (0)

Other articles
by authors

[Back to Top]