A ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$-additive code, $r≤ s$, is a${\mathbb{Z}}_{p^s}$-submodule of ${{\mathbb{Z}}_{p^r}^α× {\mathbb{Z}}_{p^s}^β}$. We introduce ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$-additive cyclic codes. These codes can be seen as ${\mathbb{Z}}_{p^s}[x]$-submodules of ${\mathcal{R}^{α,β}_{r,s}}= \frac{{\mathbb{Z}}_{p^r}[x]}{\langle x^α-1\rangle}×\frac{{\mathbb{Z}}_{p^s}[x]}{\langle x^β-1\rangle}$. We determine the generator polynomials of a code over ${\mathcal{R}^{α,β}_{r,s}}$ and a minimal spanning set over ${{\mathbb{Z}}_{p^r}^α× {\mathbb{Z}}_{p^s}^β}$ in terms of the generator polynomials. We also study the duality in the module ${\mathcal{R}^{α,β}_{r,s}}$.Our results generalise those for ${\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-additive cyclic codes.
Citation: |
T. Abualrub
, I. Siap
and N. Aydin
, $\mathbb Z_2\mathbb Z_4$-additive cyclic codes, IEEE Trans. Inf. Theory, 60 (2014)
, 1508-1514.
![]() ![]() |
|
I. Aydogdu
and I. Siap
, The structure of $\mathbb Z_2\mathbb Z_{2^s}$-additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013)
, 2271-2278.
![]() ![]() |
|
I. Aydogdu
and I. Siap
, On $\mathbb Z_{p^r}\mathbb Z_{p^s}$-additive codes, Lin. Multilin. Algebra, 63 (2014)
, 2089-2102.
![]() ![]() |
|
J. Borges
, C. Fernández-Córdoba
, J. Pujol
, J. Rifá
and M. Villanueva
, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010)
, 167-179.
![]() ![]() |
|
J. Borges
, C. Fernández-Córdoba
and R. Ten-Valls
, $\mathbb Z_2\mathbb Z_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inf. Theory, 62 (2016)
, 6348-6354.
![]() ![]() |
|
J. Borges
, C. Fernández-Córdoba
and R. Ten-Valls
, $\mathbb Z_2$-double cyclic codes, Des. Codes Crypt., 86 (2018)
, 463-479.
doi: 10.1007/s10623-017-0334-8.![]() ![]() ![]() |
|
A. R. Calderbank
and N. J. A. Sloane
, Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995)
, 21-35.
![]() ![]() |
|
H. Q. Dinh
and S. R. López-Permouth
, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50 (2004)
, 1728-1744.
![]() ![]() |
|
J. Gao
, M. Shi
, T. Wu
and F. Fu
, On double cyclic codes over $\mathbb Z_4$, Finite Fields Appl., 39 (2016)
, 233-250.
![]() ![]() |
|
P. Kanwar
and S. R. López-Permouth
, Cyclic codes over the integers modulo $p^m$, Finite Fields Appl., 3 (1997)
, 334-352.
![]() ![]() |