February  2018, 12(1): 181-188. doi: 10.3934/amc.2018012

A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems

1. 

Department of Mathematics, Claremont McKenna College, 850 Columbia Avenue, Claremont, CA 91711, USA

2. 

Department of Engineering, Harvey Mudd College, Claremont, CA 91711, USA

Received  January 2017 Revised  October 2017 Published  March 2018

We present a new family of one-coincidence sequence sets suitable for frequency hopping code division multiple access (FH-CDMA) systems with dispersed (low density) sequence elements. These sets are derived from one-coincidence prime sequence sets, such that for each one-coincidence prime sequence set there is a new one-coincidence set comprised of sequences with dispersed sequence elements, required in some circumstances, for FH-CDMA systems. Getting rid of crowdedness of sequence elements is achieved by doubling the size of the sequence element alphabet. In addition, this doubling process eases control over the distance between adjacent sequence elements. Properties of the new sets are discussed.

Citation: Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012
References:
[1]

L. Bin, One-coincidence sequences with specified distance between adjacent symbols for frequency-hopping multiple access, IEEE Trans. Commun., 45 (1997), 408-410. Google Scholar

[2]

S. GeirhoferJ. Z. SunL. Tong and B. M. Sadler, Cognitive frequency hopping based on interference prediction: Theory and experimental results, ACM SIGMOBILE Mobile Comp. Commun. Review, 13 (2009), 49-61. Google Scholar

[3]

C. Hodgdon, Adaptive frequency hopping for reduced interference between bluetooth and wireless LAN, Ericsson Technology Licensing, 2003.Google Scholar

[4]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94. Google Scholar

[5]

A. A. Shaar and P. A. Davies, A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems, IEEE Proc. F - Commun. Radar Signal Processing, 131 (1984), 719-724. Google Scholar

show all references

References:
[1]

L. Bin, One-coincidence sequences with specified distance between adjacent symbols for frequency-hopping multiple access, IEEE Trans. Commun., 45 (1997), 408-410. Google Scholar

[2]

S. GeirhoferJ. Z. SunL. Tong and B. M. Sadler, Cognitive frequency hopping based on interference prediction: Theory and experimental results, ACM SIGMOBILE Mobile Comp. Commun. Review, 13 (2009), 49-61. Google Scholar

[3]

C. Hodgdon, Adaptive frequency hopping for reduced interference between bluetooth and wireless LAN, Ericsson Technology Licensing, 2003.Google Scholar

[4]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94. Google Scholar

[5]

A. A. Shaar and P. A. Davies, A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems, IEEE Proc. F - Commun. Radar Signal Processing, 131 (1984), 719-724. Google Scholar

Table 1.  Set of prime sequences for $p = 7$
$j \in \mathbb{F}_7$0123456
Sequence $S_0=0 \cdot_7 j$0000000
Sequence $S_1=1\cdot_7 j$0123456
Sequence $S_2=2\cdot_7 j$0246135
Sequence $S_3=3\cdot_7 j$0362514
Sequence $S_4=4\cdot_7 j$0415263
Sequence $S_5=5\cdot_7 j$0531642
Sequence $S_6=6\cdot_7 j$0654321
$j \in \mathbb{F}_7$0123456
Sequence $S_0=0 \cdot_7 j$0000000
Sequence $S_1=1\cdot_7 j$0123456
Sequence $S_2=2\cdot_7 j$0246135
Sequence $S_3=3\cdot_7 j$0362514
Sequence $S_4=4\cdot_7 j$0415263
Sequence $S_5=5\cdot_7 j$0531642
Sequence $S_6=6\cdot_7 j$0654321
Table 2.  Set of HMC sequences for $p = 7$ with minimum distance $d$ between consecutive elements
Sequence $H_1$13579116 $d=2$
Sequence $H_2$26107485 $d=3$
Sequence $H_3$3987654 $d=1$
Sequence $H_4$4567893 $d=1$
Sequence $H_5$58471062 $d=3$
Sequence $H_6$61197531 $d=2$
Sequence $H_1$13579116 $d=2$
Sequence $H_2$26107485 $d=3$
Sequence $H_3$3987654 $d=1$
Sequence $H_4$4567893 $d=1$
Sequence $H_5$58471062 $d=3$
Sequence $H_6$61197531 $d=2$
Table 3.  The set of prime sequences $S_i$, $1 \leq i \leq 18$ for $p = 19$
$S_1 = $0123456789101112131415161718
$S_2 = $0246810121416181357911131517
$S_3 = $0369121518258111417147101316
$S_4 = $0481216159131726101418371115
$S_5 = $0510151611162712173813184914
$S_6 = $0612185111741016391528141713
$S_7 = $0714291641118613181531017512
$S_8 = $0816513210187154121917614311
$S_9 = $0918817716615514413312211110
$S_{10} = $0101112123134145156167178189
$S_{11} = $0113146179112415718102135168
$S_{12} = $0125171031581136181141692147
$S_{13} = $0137114821593161041711518126
$S_{14} = $0149418138317127216116115105
$S_{15} = $0151173181410621713951161284
$S_{16} = $0161310741171411852181512963
$S_{17} = $0171513119753118161412108642
$S_{18} = $0181716151413121110987654321
$S_1 = $0123456789101112131415161718
$S_2 = $0246810121416181357911131517
$S_3 = $0369121518258111417147101316
$S_4 = $0481216159131726101418371115
$S_5 = $0510151611162712173813184914
$S_6 = $0612185111741016391528141713
$S_7 = $0714291641118613181531017512
$S_8 = $0816513210187154121917614311
$S_9 = $0918817716615514413312211110
$S_{10} = $0101112123134145156167178189
$S_{11} = $0113146179112415718102135168
$S_{12} = $0125171031581136181141692147
$S_{13} = $0137114821593161041711518126
$S_{14} = $0149418138317127216116115105
$S_{15} = $0151173181410621713951161284
$S_{16} = $0161310741171411852181512963
$S_{17} = $0171513119753118161412108642
$S_{18} = $0181716151413121110987654321
Table 4.  The set of HMC sequences $H_i$, $1 \leq i \leq 18$ for $p = 19$ with minimum distance $d$ between consecutive elements
$H_1 = $135791113151719212325272931333518 $d=2$
$H_2 = $2610141822263034194812162024283217 $d = 4$
$H_3 = $3915212733207131925311851117232916 $d = 6$
$H_4 = $41220281761422301981624322110182615 $d = 8$
$H_5 = $51525167172718919292011213122132314 $d = 9$
$H_6 = $618302316282114261912241710221582013 $d = 7$
$H_7 = $721161125201529241914923181327221712 $d = 5$
$H_8 = $8242118151228252219161310262320171411 $d = 3$
$H_9 = $9272625242322212019181716151413121110 $d = 1$
$H_{10} = $1011121314151617181920212223242526279 $d = 1$
$H_{11} = $1114172023261013161922252812151821248 $d = 3$
$H_{12} = $121722271318239141924291520251116217 $d = 5$
$H_{13} = $132081522101724121926142128162130186 $d = 7$
$H_{14} = $14231322312111202919918271771625155 $d = 9$
$H_{15} = $15261810213224168193022145172820124 $d = 8$
$H_{16} = $1629231711518312519137203327211593 $d = 6$
$H_{17} = $1732282420161284193430262218141062 $d = 4$
$H_{18} = $183533312927252321191715131197531 $d = 2$
$H_1 = $135791113151719212325272931333518 $d=2$
$H_2 = $2610141822263034194812162024283217 $d = 4$
$H_3 = $3915212733207131925311851117232916 $d = 6$
$H_4 = $41220281761422301981624322110182615 $d = 8$
$H_5 = $51525167172718919292011213122132314 $d = 9$
$H_6 = $618302316282114261912241710221582013 $d = 7$
$H_7 = $721161125201529241914923181327221712 $d = 5$
$H_8 = $8242118151228252219161310262320171411 $d = 3$
$H_9 = $9272625242322212019181716151413121110 $d = 1$
$H_{10} = $1011121314151617181920212223242526279 $d = 1$
$H_{11} = $1114172023261013161922252812151821248 $d = 3$
$H_{12} = $121722271318239141924291520251116217 $d = 5$
$H_{13} = $132081522101724121926142128162130186 $d = 7$
$H_{14} = $14231322312111202919918271771625155 $d = 9$
$H_{15} = $15261810213224168193022145172820124 $d = 8$
$H_{16} = $1629231711518312519137203327211593 $d = 6$
$H_{17} = $1732282420161284193430262218141062 $d = 4$
$H_{18} = $183533312927252321191715131197531 $d = 2$
Table 5.  Set of 14 HMC sequences of period 19 and adjacent distance $ \geq 3$
$H_2 = $2610141822263034194812162024283217 $d = 4$
$H_3 = $3915212733207131925311851117232916 $d = 6$
$H_4 = $41220281761422301981624322110182615 $d = 8$
$H_5 = $51525167172718919292011213122132314 $d = 9$
$H_6 = $618302316282114261912241710221582013 $d = 7$
$H_7 = $721161125201529241914923181327221712 $d = 5$
$H_8 = $8242118151228252219161310262320171411 $d = 3$
$H_{11} = $1114172023261013161922252812151821248 $d = 3$
$H_{12} = $121722271318239141924291520251116217 $d = 5$
$H_{13} = $132081522101724121926142128162130186 $d = 7$
$H_{14} = $14231322312111202919918271771625155 $d = 9$
$H_{15} = $15261810213224168193022145172820124 $d = 8$
$H_{16} = $1629231711518312519137203327211593 $d = 6$
$H_{17} = $1732282420161284193430262218141062 $d = 4$
$H_2 = $2610141822263034194812162024283217 $d = 4$
$H_3 = $3915212733207131925311851117232916 $d = 6$
$H_4 = $41220281761422301981624322110182615 $d = 8$
$H_5 = $51525167172718919292011213122132314 $d = 9$
$H_6 = $618302316282114261912241710221582013 $d = 7$
$H_7 = $721161125201529241914923181327221712 $d = 5$
$H_8 = $8242118151228252219161310262320171411 $d = 3$
$H_{11} = $1114172023261013161922252812151821248 $d = 3$
$H_{12} = $121722271318239141924291520251116217 $d = 5$
$H_{13} = $132081522101724121926142128162130186 $d = 7$
$H_{14} = $14231322312111202919918271771625155 $d = 9$
$H_{15} = $15261810213224168193022145172820124 $d = 8$
$H_{16} = $1629231711518312519137203327211593 $d = 6$
$H_{17} = $1732282420161284193430262218141062 $d = 4$
[1]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[2]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[3]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[4]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[5]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[6]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[7]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[8]

Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049

[9]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[10]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

[11]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[12]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[13]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[14]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[15]

Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with inter-subset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541-552. doi: 10.3934/amc.2018032

[16]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[17]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[18]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[19]

Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451

[20]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (42)
  • HTML views (310)
  • Cited by (0)

Other articles
by authors

[Back to Top]