-
Previous Article
Reduced access structures with four minimal qualified subsets on six participants
- AMC Home
- This Issue
-
Next Article
A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems
Long quasi-polycyclic $t-$ CIS codes
1. | Math. Dept., King Abdulaziz University, Jeddah, Saudi Arabia |
2. | Sabancı University, FENS, 34956 Istanbul, Turkey |
3. | Université de Paris 8, 2 rue de la Liberté, 93 526 Saint-Denis, France |
We study complementary information set codes of length $tn$ and dimension $n$ of order $t$ called ($t-$CIS code for short). Quasi-cyclic (QC) and quasi-twisted (QT) $t$-CIS codes are enumerated by using their concatenated structure. Asymptotic existence results are derived for one-generator and fixed co-index QC and QT codes depending on Artin's primitive root conjecture. This shows that there are infinite families of rate $1/t$ long QC and QT $t$-CIS codes with relative distance satisfying a modified Varshamov-Gilbert bound. Similar results are defined for the new and more general class of quasi-polycyclic codes introduced recently by Berger and Amrani.
References:
[1] |
A. Alahmadi, C. Güneri, B. Özkaya, H. Shoaib and P. Solé,
On self-dual double negacirculant codes, Discrete Appl. Math., 222 (2017), 205-212.
|
[2] |
A. Alahmadi, S. T. Dougherty, A. Leroy and P. Solé,
On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921--929.
|
[3] |
N. Aydin and D. Ray-Chaudhuri,
Quasi-cyclic codes over $\mathbb{Z}_4$ and some new binary codes, IEEE Trans. Inf. Theory, 48 (2002), 2065-2069.
|
[4] |
T. P. Berger and N. E. Amrani,
Codes over finite quotients of polynomial rings, Finite Fields Appl., 25 (2014), 165-181.
|
[5] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.
|
[6] |
C. Carlet, F. Freibert, S. Guilley, M. Kiermaier, J.-L. Kim and P. Solé,
Higher-order CIS codes, IEEE Trans. Inf. Theory, 60 (2014), 5283-5295.
|
[7] |
C. Carlet, P. Gaborit, J.-L. Kim and P. Solé,
A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012), 6000-6011.
|
[8] |
C. L. Chen, W. W. Peterson and E. J. Weldon,
Some results on quasi-cyclic codes, Inf. Control, 15 (1969), 407-423.
|
[9] |
M. Grassl,
Tables of Linear Codes and Quantum Codes, available at www.codetables.de |
[10] |
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé,
The $Z_4$
-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory,, 40 (1994), 301-319.
|
[11] |
C. Hooley,
On Artin's conjecture, J. Reine Angew. Math., 225 (1967), 209-220.
|
[12] |
W. C. Huffman and V. Pless,
Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003. |
[13] |
Y. Jia,
On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.
|
[14] |
R. Lidl and H. Niederreiter,
Finite Fields, Addison-Wesley, Reading, 1983. |
[15] |
S. Ling and P. Solé,
On the algebraic structure of quasi-cyclic codes Ⅰ: finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.
|
[16] |
P. Moree,
Artin's primitive root conjecture--a survey, Integers, 6 (2012), 1305-1416.
|
[17] |
show all references
References:
[1] |
A. Alahmadi, C. Güneri, B. Özkaya, H. Shoaib and P. Solé,
On self-dual double negacirculant codes, Discrete Appl. Math., 222 (2017), 205-212.
|
[2] |
A. Alahmadi, S. T. Dougherty, A. Leroy and P. Solé,
On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921--929.
|
[3] |
N. Aydin and D. Ray-Chaudhuri,
Quasi-cyclic codes over $\mathbb{Z}_4$ and some new binary codes, IEEE Trans. Inf. Theory, 48 (2002), 2065-2069.
|
[4] |
T. P. Berger and N. E. Amrani,
Codes over finite quotients of polynomial rings, Finite Fields Appl., 25 (2014), 165-181.
|
[5] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.
|
[6] |
C. Carlet, F. Freibert, S. Guilley, M. Kiermaier, J.-L. Kim and P. Solé,
Higher-order CIS codes, IEEE Trans. Inf. Theory, 60 (2014), 5283-5295.
|
[7] |
C. Carlet, P. Gaborit, J.-L. Kim and P. Solé,
A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012), 6000-6011.
|
[8] |
C. L. Chen, W. W. Peterson and E. J. Weldon,
Some results on quasi-cyclic codes, Inf. Control, 15 (1969), 407-423.
|
[9] |
M. Grassl,
Tables of Linear Codes and Quantum Codes, available at www.codetables.de |
[10] |
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé,
The $Z_4$
-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory,, 40 (1994), 301-319.
|
[11] |
C. Hooley,
On Artin's conjecture, J. Reine Angew. Math., 225 (1967), 209-220.
|
[12] |
W. C. Huffman and V. Pless,
Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003. |
[13] |
Y. Jia,
On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.
|
[14] |
R. Lidl and H. Niederreiter,
Finite Fields, Addison-Wesley, Reading, 1983. |
[15] |
S. Ling and P. Solé,
On the algebraic structure of quasi-cyclic codes Ⅰ: finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.
|
[16] |
P. Moree,
Artin's primitive root conjecture--a survey, Integers, 6 (2012), 1305-1416.
|
[17] |
[1] |
Enhui Lim, Frédérique Oggier. On the generalised rank weights of quasi-cyclic codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022010 |
[2] |
Nuh Aydin, Nicholas Connolly, Markus Grassl. Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes. Advances in Mathematics of Communications, 2017, 11 (1) : 245-258. doi: 10.3934/amc.2017016 |
[3] |
Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259 |
[4] |
Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045 |
[5] |
Upendra Kapshikar, Ayan Mahalanobis. Niederreiter cryptosystems using quasi-cyclic codes that resist quantum Fourier sampling. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021062 |
[6] |
T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223 |
[7] |
Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 |
[8] |
Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99 |
[9] |
Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049 |
[10] |
José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018 |
[11] |
Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2020, 14 (3) : 455-466. doi: 10.3934/amc.2020028 |
[12] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[13] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[14] |
Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177 |
[15] |
Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042 |
[16] |
Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035 |
[17] |
Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41 |
[18] |
Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001 |
[19] |
Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055 |
[20] |
Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]