We study complementary information set codes of length $tn$ and dimension $n$ of order $t$ called ($t-$CIS code for short). Quasi-cyclic (QC) and quasi-twisted (QT) $t$-CIS codes are enumerated by using their concatenated structure. Asymptotic existence results are derived for one-generator and fixed co-index QC and QT codes depending on Artin's primitive root conjecture. This shows that there are infinite families of rate $1/t$ long QC and QT $t$-CIS codes with relative distance satisfying a modified Varshamov-Gilbert bound. Similar results are defined for the new and more general class of quasi-polycyclic codes introduced recently by Berger and Amrani.
Citation: |
A. Alahmadi
, C. Güneri
, B. Özkaya
, H. Shoaib
and P. Solé
, On self-dual double negacirculant codes, Discrete Appl. Math., 222 (2017)
, 205-212.
![]() ![]() |
|
A. Alahmadi
, S. T. Dougherty
, A. Leroy
and P. Solé
, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016)
, 921--929.
![]() ![]() |
|
N. Aydin
and D. Ray-Chaudhuri
, Quasi-cyclic codes over $\mathbb{Z}_4$ and some new binary codes, IEEE Trans. Inf. Theory, 48 (2002)
, 2065-2069.
![]() ![]() |
|
T. P. Berger
and N. E. Amrani
, Codes over finite quotients of polynomial rings, Finite Fields Appl., 25 (2014)
, 165-181.
![]() ![]() |
|
W. Bosma
, J. Cannon
and C. Playoust
, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997)
, 235-265.
![]() ![]() |
|
C. Carlet
, F. Freibert
, S. Guilley
, M. Kiermaier
, J.-L. Kim
and P. Solé
, Higher-order CIS codes, IEEE Trans. Inf. Theory, 60 (2014)
, 5283-5295.
![]() ![]() |
|
C. Carlet
, P. Gaborit
, J.-L. Kim
and P. Solé
, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012)
, 6000-6011.
![]() ![]() |
|
C. L. Chen
, W. W. Peterson
and E. J. Weldon
, Some results on quasi-cyclic codes, Inf. Control, 15 (1969)
, 407-423.
![]() ![]() |
|
M. Grassl,
Tables of Linear Codes and Quantum Codes, available at www.codetables.de
![]() |
|
A. R. Hammons Jr.
, P. V. Kumar
, A. R. Calderbank
, N. J. A. Sloane
and P. Solé
, The $Z_4$
-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory,, 40 (1994)
, 301-319.
![]() ![]() |
|
C. Hooley
, On Artin's conjecture, J. Reine Angew. Math., 225 (1967)
, 209-220.
![]() ![]() |
|
W. C. Huffman and V. Pless,
Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003.
![]() ![]() |
|
Y. Jia
, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012)
, 237-257.
![]() ![]() |
|
R. Lidl and H. Niederreiter,
Finite Fields, Addison-Wesley, Reading, 1983.
![]() ![]() |
|
S. Ling
and P. Solé
, On the algebraic structure of quasi-cyclic codes Ⅰ: finite fields, IEEE Trans. Inf. Theory, 47 (2001)
, 2751-2760.
![]() ![]() |
|
P. Moree
, Artin's primitive root conjecture--a survey, Integers, 6 (2012)
, 1305-1416.
![]() ![]() |
|
Z. -X. Wan,
Quaternary Codes, WorldScientific, 1997.
![]() ![]() |