• Previous Article
    Reduced access structures with four minimal qualified subsets on six participants
  • AMC Home
  • This Issue
  • Next Article
    A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems
February  2018, 12(1): 189-198. doi: 10.3934/amc.2018013

Long quasi-polycyclic $t-$ CIS codes

1. 

Math. Dept., King Abdulaziz University, Jeddah, Saudi Arabia

2. 

Sabancı University, FENS, 34956 Istanbul, Turkey

3. 

Université de Paris 8, 2 rue de la Liberté, 93 526 Saint-Denis, France

Received  February 2017 Published  March 2018

We study complementary information set codes of length $tn$ and dimension $n$ of order $t$ called ($t-$CIS code for short). Quasi-cyclic (QC) and quasi-twisted (QT) $t$-CIS codes are enumerated by using their concatenated structure. Asymptotic existence results are derived for one-generator and fixed co-index QC and QT codes depending on Artin's primitive root conjecture. This shows that there are infinite families of rate $1/t$ long QC and QT $t$-CIS codes with relative distance satisfying a modified Varshamov-Gilbert bound. Similar results are defined for the new and more general class of quasi-polycyclic codes introduced recently by Berger and Amrani.

Citation: Adel Alahmadi, Cem Güneri, Hatoon Shoaib, Patrick Solé. Long quasi-polycyclic $t-$ CIS codes. Advances in Mathematics of Communications, 2018, 12 (1) : 189-198. doi: 10.3934/amc.2018013
References:
[1]

A. AlahmadiC. GüneriB. ÖzkayaH. Shoaib and P. Solé, On self-dual double negacirculant codes, Discrete Appl. Math., 222 (2017), 205-212.   Google Scholar

[2]

A. AlahmadiS. T. DoughertyA. Leroy and P. Solé, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921--929.   Google Scholar

[3]

N. Aydin and D. Ray-Chaudhuri, Quasi-cyclic codes over $\mathbb{Z}_4$ and some new binary codes, IEEE Trans. Inf. Theory, 48 (2002), 2065-2069.   Google Scholar

[4]

T. P. Berger and N. E. Amrani, Codes over finite quotients of polynomial rings, Finite Fields Appl., 25 (2014), 165-181.   Google Scholar

[5]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.   Google Scholar

[6]

C. CarletF. FreibertS. GuilleyM. KiermaierJ.-L. Kim and P. Solé, Higher-order CIS codes, IEEE Trans. Inf. Theory, 60 (2014), 5283-5295.   Google Scholar

[7]

C. CarletP. GaboritJ.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012), 6000-6011.   Google Scholar

[8]

C. L. ChenW. W. Peterson and E. J. Weldon, Some results on quasi-cyclic codes, Inf. Control, 15 (1969), 407-423.   Google Scholar

[9]

M. Grassl, Tables of Linear Codes and Quantum Codes, available at www.codetables.de Google Scholar

[10]

A. R. Hammons Jr.P. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $Z_4$ -linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory,, 40 (1994), 301-319.   Google Scholar

[11]

C. Hooley, On Artin's conjecture, J. Reine Angew. Math., 225 (1967), 209-220.   Google Scholar

[12]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003.  Google Scholar

[13]

Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.   Google Scholar

[14]

R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, 1983.  Google Scholar

[15]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅰ: finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.   Google Scholar

[16]

P. Moree, Artin's primitive root conjecture--a survey, Integers, 6 (2012), 1305-1416.   Google Scholar

[17]

Z. -X. Wan, Quaternary Codes, WorldScientific, 1997.  Google Scholar

show all references

References:
[1]

A. AlahmadiC. GüneriB. ÖzkayaH. Shoaib and P. Solé, On self-dual double negacirculant codes, Discrete Appl. Math., 222 (2017), 205-212.   Google Scholar

[2]

A. AlahmadiS. T. DoughertyA. Leroy and P. Solé, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921--929.   Google Scholar

[3]

N. Aydin and D. Ray-Chaudhuri, Quasi-cyclic codes over $\mathbb{Z}_4$ and some new binary codes, IEEE Trans. Inf. Theory, 48 (2002), 2065-2069.   Google Scholar

[4]

T. P. Berger and N. E. Amrani, Codes over finite quotients of polynomial rings, Finite Fields Appl., 25 (2014), 165-181.   Google Scholar

[5]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.   Google Scholar

[6]

C. CarletF. FreibertS. GuilleyM. KiermaierJ.-L. Kim and P. Solé, Higher-order CIS codes, IEEE Trans. Inf. Theory, 60 (2014), 5283-5295.   Google Scholar

[7]

C. CarletP. GaboritJ.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inf. Theory, 58 (2012), 6000-6011.   Google Scholar

[8]

C. L. ChenW. W. Peterson and E. J. Weldon, Some results on quasi-cyclic codes, Inf. Control, 15 (1969), 407-423.   Google Scholar

[9]

M. Grassl, Tables of Linear Codes and Quantum Codes, available at www.codetables.de Google Scholar

[10]

A. R. Hammons Jr.P. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $Z_4$ -linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory,, 40 (1994), 301-319.   Google Scholar

[11]

C. Hooley, On Artin's conjecture, J. Reine Angew. Math., 225 (1967), 209-220.   Google Scholar

[12]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003.  Google Scholar

[13]

Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.   Google Scholar

[14]

R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, 1983.  Google Scholar

[15]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅰ: finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.   Google Scholar

[16]

P. Moree, Artin's primitive root conjecture--a survey, Integers, 6 (2012), 1305-1416.   Google Scholar

[17]

Z. -X. Wan, Quaternary Codes, WorldScientific, 1997.  Google Scholar

[1]

Nuh Aydin, Nicholas Connolly, Markus Grassl. Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes. Advances in Mathematics of Communications, 2017, 11 (1) : 245-258. doi: 10.3934/amc.2017016

[2]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[3]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[4]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[5]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[6]

Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049

[7]

Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99

[8]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[9]

Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2020, 14 (3) : 455-466. doi: 10.3934/amc.2020028

[10]

Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042

[11]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[12]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[13]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[14]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[15]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[16]

Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035

[17]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[18]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[19]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[20]

Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (96)
  • HTML views (167)
  • Cited by (1)

[Back to Top]