February  2018, 12(1): 199-214. doi: 10.3934/amc.2018014

Reduced access structures with four minimal qualified subsets on six participants

Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415, Tehran, Iran

Received  March 2017 Revised  August 2017 Published  March 2018

In this paper, we discuss a point about applying known decomposition techniques in their most general form. Three versions of these methods, which are useful for obtaining upper bounds on the optimal information ratios of access structures, are known as: Stinson's $λ$-decomposition, $(λ, ω)$-decomposition and $λ$-weighted-decomposition, where the latter two are generalizations of the first one. We continue by considering the problem of determining the exact values of the optimal information ratios of the reduced access structures with exactly four minimal qualified subsets on six participants, which remained unsolved in Martí-Farré et al.'s paper [Des. Codes Cryptogr. 61 (2011), 167-186]. We improve the known upper bounds for all the access structures, except four cases, determining the exact values of the optimal information ratios. All three decomposition techniques are used while some cases are handled by taking full advantage of the generality of decompositions.

Citation: Motahhareh Gharahi, Shahram Khazaei. Reduced access structures with four minimal qualified subsets on six participants. Advances in Mathematics of Communications, 2018, 12 (1) : 199-214. doi: 10.3934/amc.2018014
References:
[1]

A. Beimel, Secret-sharing schemes: a survey, in Int. Conf. Coding Crypt., Springer, 2011, 11–46. Google Scholar

[2]

A. Beimel, A. Ben-Efraim, C. Padró and I. Tyomkin, Multi-linear secret-sharing schemes, in Theory of Cryptography Conference, Springer, Berlin, 2014,394–418. Google Scholar

[3]

G. R. Blakley, Safeguarding cryptographic keys, in Proceedings of the 1979 AFIPS National Computer Conference, Monval, NJ, USA, AFIPS Press, 1979, 313-317.Google Scholar

[4]

C. BlundoA. De SantisD. R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes, J. Cryptology, 8 (1995), 39-64. Google Scholar

[5]

C. BlundoA. De SantisR. D. Simone and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Des. Codes Crypt., 11 (1997), 107-122. Google Scholar

[6]

E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect secret sharing schemes, J. Cryptology, 5 (1992), 153-166. Google Scholar

[7]

R. M. CapocelliA. D. SantisL. Gargano and U. Vaccaro, On the size of shares for secret sharing schemes, J. Cryptology, 6 (1993), 157-167. Google Scholar

[8]

L. Csirmaz, An impossibility result on graph secret sharing, Des. Codes Crypt., 53 (2009), 195-209. Google Scholar

[9]

L. Csirmaz, Secret sharing on the d-dimensional cube, Des. Codes Crypt., 74 (2015), 719-729. Google Scholar

[10]

L. Csirmaz and G. Tardos, Optimal information rate of secret sharing schemes on trees, IEEE Trans. Inf. Theory, 59 (2013), 2527-2530. Google Scholar

[11]

O. Farràs, T. B. Hansen, T. Kaced and C. Padró, Optimal non-perfect uniform secret sharing schemes, in Int. Crypt. Conf., Springer, Berlin, 2014,217–234. Google Scholar

[12]

O. Farràs, T. Kaced, S. Martin and C. Padro, Improving the linear programming technique in the search for lower bounds in secret sharing, Cryptology ePrint Archive, Report 2017/919,2017; available at https://eprint.iacr.org/2017/919Google Scholar

[13]

O. FarràsJ. R. Metcalf-BurtonC. Padró and L. Vázquez, On the optimization of bipartite secret sharing schemes, Des. Codes Crypt., 63 (2012), 255-271. Google Scholar

[14]

M. Gharahi and M. H. Dehkordi, Perfect secret sharing schemes for graph access structures on six participants, J. Math. Crypt., 7 (2013), 143-146. Google Scholar

[15]

M. Gharahi and M. H. Dehkordi, The complexity of the graph access structures on six participants, Des. Codes Crypt., 67 (2013), 169-173. Google Scholar

[16]

M. ItoA. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Electr. Commun. Japan (Part Ⅲ: Fundam. Electr. Sci.), 72 (1989), 56-64. Google Scholar

[17]

W.-A. Jackson and K. M. Martin, Geometric secret sharing schemes and their duals, Des. Codes Crypt., 4 (1994), 83-95. Google Scholar

[18]

W.-A. Jackson and K. M. Martin, Perfect secret sharing schemes on five participants, Des. Codes Crypt., 9 (1996), 267-286. Google Scholar

[19]

E. D. KarninJ. W. Greene and M. E. Hellman, On secret sharing systems, IEEE Trans. Inf. Theory, 29 (1983), 35-41. Google Scholar

[20]

J. Martí-Farré and C. Padró, Secret sharing schemes with three or four minimal qualified subsets, Des. Codes Crypt., 34 (2005), 17-34. Google Scholar

[21]

J. Martí-Farré and C. Padró, Secret sharing schemes on access structures with intersection number equal to one, Discrete Appl. Math., 154 (2006), 552-563. Google Scholar

[22]

J. Martí-FarréC. Padró and L. Vázquez, Optimal complexity of secret sharing schemes with four minimal qualified subsets, Des. Codes Crypt., 61 (2011), 167-186. Google Scholar

[23]

K. M. Martin, New secret sharing schemes from old, J. Combin. Math. Combin. Comp., 14 (1993), 65-77. Google Scholar

[24]

C. Padró and G. Sáez, Secret sharing schemes with bipartite access structure, IEEE Trans. Inf. Theory, 46 (2000), 2596-2604. Google Scholar

[25]

C. Padró and G. Sáez, Lower bounds on the information rate of secret sharing schemes with homogeneous access structure, Inf. Process. Lett., 83 (2002), 345-351. Google Scholar

[26]

C. PadróL. Vázquez and A. Yang, Finding lower bounds on the complexity of secret sharing schemes by linear programming, Discrete Appl. Math., 161 (2013), 1072-1084. Google Scholar

[27]

A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612-613. Google Scholar

[28]

D. R. Stinson, An explication of secret sharing schemes, Des. Codes Crypt., 2 (1992), 357-390. Google Scholar

[29]

D. R. Stinson, Decomposition constructions for secret-sharing schemes, IEEE Trans. Inf. Theory, 40 (1994), 118-125. Google Scholar

[30]

H.-M. Sun and B.-L. Chen, Weighted decomposition construction for perfect secret sharing schemes, Comp. Math. Appl., 43 (2002), 877-887. Google Scholar

[31]

H.-M. SunH. WangB.-H. Ku and J. Pieprzyk, Decomposition construction for secret sharing schemes with graph access structures in polynomial time, SIAM J. Discrete Math., 24 (2010), 617-638. Google Scholar

[32]

M. Van Dijk, On the information rate of perfect secret sharing schemes, Des. Codes Crypt., 6 (1995), 143-169. Google Scholar

[33]

M. Van DijkW.-A. Jackson and K. M. Martin, A general decomposition construction for incomplete secret sharing schemes, Des. Codes Crypt., 15 (1998), 301-321. Google Scholar

[34]

M. Van DijkT. KevenaarG.-J. Schrijen and P. Tuyls, Improved constructions of secret sharing schemes by applying ($λ$, $ω$)-decompositions, Inf. Process. Lett., 99 (2006), 154-157. Google Scholar

show all references

References:
[1]

A. Beimel, Secret-sharing schemes: a survey, in Int. Conf. Coding Crypt., Springer, 2011, 11–46. Google Scholar

[2]

A. Beimel, A. Ben-Efraim, C. Padró and I. Tyomkin, Multi-linear secret-sharing schemes, in Theory of Cryptography Conference, Springer, Berlin, 2014,394–418. Google Scholar

[3]

G. R. Blakley, Safeguarding cryptographic keys, in Proceedings of the 1979 AFIPS National Computer Conference, Monval, NJ, USA, AFIPS Press, 1979, 313-317.Google Scholar

[4]

C. BlundoA. De SantisD. R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes, J. Cryptology, 8 (1995), 39-64. Google Scholar

[5]

C. BlundoA. De SantisR. D. Simone and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Des. Codes Crypt., 11 (1997), 107-122. Google Scholar

[6]

E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect secret sharing schemes, J. Cryptology, 5 (1992), 153-166. Google Scholar

[7]

R. M. CapocelliA. D. SantisL. Gargano and U. Vaccaro, On the size of shares for secret sharing schemes, J. Cryptology, 6 (1993), 157-167. Google Scholar

[8]

L. Csirmaz, An impossibility result on graph secret sharing, Des. Codes Crypt., 53 (2009), 195-209. Google Scholar

[9]

L. Csirmaz, Secret sharing on the d-dimensional cube, Des. Codes Crypt., 74 (2015), 719-729. Google Scholar

[10]

L. Csirmaz and G. Tardos, Optimal information rate of secret sharing schemes on trees, IEEE Trans. Inf. Theory, 59 (2013), 2527-2530. Google Scholar

[11]

O. Farràs, T. B. Hansen, T. Kaced and C. Padró, Optimal non-perfect uniform secret sharing schemes, in Int. Crypt. Conf., Springer, Berlin, 2014,217–234. Google Scholar

[12]

O. Farràs, T. Kaced, S. Martin and C. Padro, Improving the linear programming technique in the search for lower bounds in secret sharing, Cryptology ePrint Archive, Report 2017/919,2017; available at https://eprint.iacr.org/2017/919Google Scholar

[13]

O. FarràsJ. R. Metcalf-BurtonC. Padró and L. Vázquez, On the optimization of bipartite secret sharing schemes, Des. Codes Crypt., 63 (2012), 255-271. Google Scholar

[14]

M. Gharahi and M. H. Dehkordi, Perfect secret sharing schemes for graph access structures on six participants, J. Math. Crypt., 7 (2013), 143-146. Google Scholar

[15]

M. Gharahi and M. H. Dehkordi, The complexity of the graph access structures on six participants, Des. Codes Crypt., 67 (2013), 169-173. Google Scholar

[16]

M. ItoA. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Electr. Commun. Japan (Part Ⅲ: Fundam. Electr. Sci.), 72 (1989), 56-64. Google Scholar

[17]

W.-A. Jackson and K. M. Martin, Geometric secret sharing schemes and their duals, Des. Codes Crypt., 4 (1994), 83-95. Google Scholar

[18]

W.-A. Jackson and K. M. Martin, Perfect secret sharing schemes on five participants, Des. Codes Crypt., 9 (1996), 267-286. Google Scholar

[19]

E. D. KarninJ. W. Greene and M. E. Hellman, On secret sharing systems, IEEE Trans. Inf. Theory, 29 (1983), 35-41. Google Scholar

[20]

J. Martí-Farré and C. Padró, Secret sharing schemes with three or four minimal qualified subsets, Des. Codes Crypt., 34 (2005), 17-34. Google Scholar

[21]

J. Martí-Farré and C. Padró, Secret sharing schemes on access structures with intersection number equal to one, Discrete Appl. Math., 154 (2006), 552-563. Google Scholar

[22]

J. Martí-FarréC. Padró and L. Vázquez, Optimal complexity of secret sharing schemes with four minimal qualified subsets, Des. Codes Crypt., 61 (2011), 167-186. Google Scholar

[23]

K. M. Martin, New secret sharing schemes from old, J. Combin. Math. Combin. Comp., 14 (1993), 65-77. Google Scholar

[24]

C. Padró and G. Sáez, Secret sharing schemes with bipartite access structure, IEEE Trans. Inf. Theory, 46 (2000), 2596-2604. Google Scholar

[25]

C. Padró and G. Sáez, Lower bounds on the information rate of secret sharing schemes with homogeneous access structure, Inf. Process. Lett., 83 (2002), 345-351. Google Scholar

[26]

C. PadróL. Vázquez and A. Yang, Finding lower bounds on the complexity of secret sharing schemes by linear programming, Discrete Appl. Math., 161 (2013), 1072-1084. Google Scholar

[27]

A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612-613. Google Scholar

[28]

D. R. Stinson, An explication of secret sharing schemes, Des. Codes Crypt., 2 (1992), 357-390. Google Scholar

[29]

D. R. Stinson, Decomposition constructions for secret-sharing schemes, IEEE Trans. Inf. Theory, 40 (1994), 118-125. Google Scholar

[30]

H.-M. Sun and B.-L. Chen, Weighted decomposition construction for perfect secret sharing schemes, Comp. Math. Appl., 43 (2002), 877-887. Google Scholar

[31]

H.-M. SunH. WangB.-H. Ku and J. Pieprzyk, Decomposition construction for secret sharing schemes with graph access structures in polynomial time, SIAM J. Discrete Math., 24 (2010), 617-638. Google Scholar

[32]

M. Van Dijk, On the information rate of perfect secret sharing schemes, Des. Codes Crypt., 6 (1995), 143-169. Google Scholar

[33]

M. Van DijkW.-A. Jackson and K. M. Martin, A general decomposition construction for incomplete secret sharing schemes, Des. Codes Crypt., 15 (1998), 301-321. Google Scholar

[34]

M. Van DijkT. KevenaarG.-J. Schrijen and P. Tuyls, Improved constructions of secret sharing schemes by applying ($λ$, $ω$)-decompositions, Inf. Process. Lett., 99 (2006), 154-157. Google Scholar

Table 1.  An ideal $2$-decomposition for $\Gamma = \Gamma_{4}(\{1, 2, 3, 5, 9, C\})$
$[\Gamma^-]=23+5C+9C+1359$
$[{\Gamma ^{j}}^-]$ ${{\mathbf{\sigma }}^{j}}=\text{(}\sigma _{p}^{j}\text{)}_{p\in\mathcal{P}}$
$23$ $(0, 1, 1, 0, 0, 0)$
$5C+9C$ $(0, 0, 0, 1, 1, 1)$
$5C+1359 $ $(1, 0, 1, 1, 1, 1)$
$23+9C+1359+125C$ $(1, 1, 1, 1, 1, 1)$
$[\Gamma^-]=23+5C+9C+1359$
$[{\Gamma ^{j}}^-]$ ${{\mathbf{\sigma }}^{j}}=\text{(}\sigma _{p}^{j}\text{)}_{p\in\mathcal{P}}$
$23$ $(0, 1, 1, 0, 0, 0)$
$5C+9C$ $(0, 0, 0, 1, 1, 1)$
$5C+1359 $ $(1, 0, 1, 1, 1, 1)$
$23+9C+1359+125C$ $(1, 1, 1, 1, 1, 1)$
Table 2.  An ideal $(3, 1)$-decomposition for $\Gamma = \Gamma_{4}(\{1, 3, 5, A, B, C\})$
$[\Gamma^-]=5C + 3AB + ABC +135B$ $\Gamma^+=\{13BC, 13AC, 15AB, 135A, 35B\}$
$[{\Gamma ^{j}}^-]$$a_1\dots a_4$$b_1\dots b_5$${{\mathbf{\sigma }}^{j}}=\text{(}\sigma _{p}^{j}\text{)}_{p\in\mathcal{P}}$
$5C$$1000$$00000$$(0, 0, 1, 0, 0, 1)$
$ 5+AB$$1111$$00111$$(0, 0, 1, 1, 1, 0)$
$C+3AB+13B$$1111$$11000$$(1, 1, 0, 1, 1, 1)$
$3AB+ABC+135B+15BC$$0111$$00000$$(1, 1, 1, 1, 1, 1)$
Note. Consider an access structure $\Gamma$ with $\Gamma^-=\{A_1, \dots, A_m\}$ and $\Gamma^+=\{B_1, \dots, B_{M}\}$. Each bit $a_i$ of binary string $a_1\dots a_m$ in the second column indicates if $A_i$ is a qualified subset of $\Gamma^j$; that is, $a_i=1$ iff $A_i\in{\Gamma^j} $. Similarly, each bit $b_i$ of binary string $b_1\dots b_M$ in third column indicates if $B_i$ is a qualified subset of ${\Gamma^j}$; that is, $b_i=1$ iff $B_i\in{\Gamma^j} $.
$[\Gamma^-]=5C + 3AB + ABC +135B$ $\Gamma^+=\{13BC, 13AC, 15AB, 135A, 35B\}$
$[{\Gamma ^{j}}^-]$$a_1\dots a_4$$b_1\dots b_5$${{\mathbf{\sigma }}^{j}}=\text{(}\sigma _{p}^{j}\text{)}_{p\in\mathcal{P}}$
$5C$$1000$$00000$$(0, 0, 1, 0, 0, 1)$
$ 5+AB$$1111$$00111$$(0, 0, 1, 1, 1, 0)$
$C+3AB+13B$$1111$$11000$$(1, 1, 0, 1, 1, 1)$
$3AB+ABC+135B+15BC$$0111$$00000$$(1, 1, 1, 1, 1, 1)$
Note. Consider an access structure $\Gamma$ with $\Gamma^-=\{A_1, \dots, A_m\}$ and $\Gamma^+=\{B_1, \dots, B_{M}\}$. Each bit $a_i$ of binary string $a_1\dots a_m$ in the second column indicates if $A_i$ is a qualified subset of $\Gamma^j$; that is, $a_i=1$ iff $A_i\in{\Gamma^j} $. Similarly, each bit $b_i$ of binary string $b_1\dots b_M$ in third column indicates if $B_i$ is a qualified subset of ${\Gamma^j}$; that is, $b_i=1$ iff $B_i\in{\Gamma^j} $.
Table 3.  A $2$-weighted-decomposition for $\Gamma = \Gamma_{4}(\{3, 5, 6, 9, A, D\})$
$[\Gamma^-]=359D+36A+56D+9AD$
$[W_{j}^{-}]$ $\Sigma^j$ ${{\mathbf{\sigma }}^{j}}=\text{(}\sigma _{p}^{j}\text{)}_{p\in\mathcal{P}}$
$ 1\times(359D+36AD+56D+9AD) $ $(1, 1, 1, 1, 1, 1)$
$ 1 \times(359D+56D+9AD)+2\times(36A)$$\Sigma^2$ $(2, 1, 2, 1, 2, 2)$
Note. In $\Sigma^2$, the shares of participants are assigned as follows: $\mathbf{s}_3= (r_2+r_4-s_1, r_5)$, $\mathbf{s}_5 =r_3+r_4$, $\mathbf{s}_6 = (r_4, r_6), \mathbf{s}_9 =r_1+r_2, \mathbf{s}_A= (r_2, r_5+r_6+s_2)$, $\mathbf{s}_ D=(r_3+s_1, r_1+s_1)$.
$[\Gamma^-]=359D+36A+56D+9AD$
$[W_{j}^{-}]$ $\Sigma^j$ ${{\mathbf{\sigma }}^{j}}=\text{(}\sigma _{p}^{j}\text{)}_{p\in\mathcal{P}}$
$ 1\times(359D+36AD+56D+9AD) $ $(1, 1, 1, 1, 1, 1)$
$ 1 \times(359D+56D+9AD)+2\times(36A)$$\Sigma^2$ $(2, 1, 2, 1, 2, 2)$
Note. In $\Sigma^2$, the shares of participants are assigned as follows: $\mathbf{s}_3= (r_2+r_4-s_1, r_5)$, $\mathbf{s}_5 =r_3+r_4$, $\mathbf{s}_6 = (r_4, r_6), \mathbf{s}_9 =r_1+r_2, \mathbf{s}_A= (r_2, r_5+r_6+s_2)$, $\mathbf{s}_ D=(r_3+s_1, r_1+s_1)$.
Table 4.  Results obtained by ideal $\lambda$-decomposition
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{1}$$12359C$ $ 23 + 5C + 9C + 1359 $$[3/2, 5/3]$$3/2$
$\mathcal{A}_{2}$$ 12569C $ $ 26 + 9C + 159 + 56C $
$\mathcal{A}_{3}$$ 13569A $$ 56 + 9A + 36A + 1359 $
$\mathcal{A}_{4}$$ 1356AC $$ AC + 135 + 56C + 36A $
$\mathcal{A}_{5}$$35679A$$ 9A+567+367A+3579$
$\mathcal{A}_{6}$$ 127BCD $ $17BD+27B+7CD+BCD$ $[5/3, 11/6]$ $5/3$
Note. Details of decompositions can be found in Appendix A.1.
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{1}$$12359C$ $ 23 + 5C + 9C + 1359 $$[3/2, 5/3]$$3/2$
$\mathcal{A}_{2}$$ 12569C $ $ 26 + 9C + 159 + 56C $
$\mathcal{A}_{3}$$ 13569A $$ 56 + 9A + 36A + 1359 $
$\mathcal{A}_{4}$$ 1356AC $$ AC + 135 + 56C + 36A $
$\mathcal{A}_{5}$$35679A$$ 9A+567+367A+3579$
$\mathcal{A}_{6}$$ 127BCD $ $17BD+27B+7CD+BCD$ $[5/3, 11/6]$ $5/3$
Note. Details of decompositions can be found in Appendix A.1.
Table 5.  Result obtained by non-ideal $\lambda$-decomposition
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{7}$$167ABD$$17BD+67AB+67D+ABD $$[3/2, 5/3]$$3/2$
Note. Details of decomposition can be found in Appendix A.2.
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{7}$$167ABD$$17BD+67AB+67D+ABD $$[3/2, 5/3]$$3/2$
Note. Details of decomposition can be found in Appendix A.2.
Table 6.  Results obtained by ideal $(\lambda, \omega)$-decomposition
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{8}$$ 135ABC $$ 5C + 3AB + ABC + 135B $$[3/2, 5/3]$$3/2$
$\mathcal{A}_{9}$$ 125ACD $$ 2A+ 15D+ 5CD + ACD $
$\mathcal{A}_{10}$$ 136ACE $$ 13 + ACE + 6CE + 36AE $
$\mathcal{A}_{11}$$ 167ABC $$ 17B + 67C + ABC + 67AB $
Note. Details of decompositions can be found in Appendix A.3.
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{8}$$ 135ABC $$ 5C + 3AB + ABC + 135B $$[3/2, 5/3]$$3/2$
$\mathcal{A}_{9}$$ 125ACD $$ 2A+ 15D+ 5CD + ACD $
$\mathcal{A}_{10}$$ 136ACE $$ 13 + ACE + 6CE + 36AE $
$\mathcal{A}_{11}$$ 167ABC $$ 17B + 67C + ABC + 67AB $
Note. Details of decompositions can be found in Appendix A.3.
Table 7.  Results obtained by $\lambda$-weighted decomposition
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{12}$$ 3569AD $$359D+36A+56D+9AD$$[3/2, 5/3]$$3/2$
$\mathcal{A}_{13}$$ 1249AC $ $ 19 + 2A + 4C + 9AC $
$\mathcal{A}_{14}$$ 35679E $$ 3579+367E+567E+9E $
$\mathcal{A}_{15}$$ 3569BE $$359B+36BE+56E+9BE$$[3/2, 7/4]$
Note. Details of decompositions can be found in Appendix A.4.
$\mathcal{P}$Access Structure $\sigma$ from [22] $\sigma$
$\mathcal{A}_{12}$$ 3569AD $$359D+36A+56D+9AD$$[3/2, 5/3]$$3/2$
$\mathcal{A}_{13}$$ 1249AC $ $ 19 + 2A + 4C + 9AC $
$\mathcal{A}_{14}$$ 35679E $$ 3579+367E+567E+9E $
$\mathcal{A}_{15}$$ 3569BE $$359B+36BE+56E+9BE$$[3/2, 7/4]$
Note. Details of decompositions can be found in Appendix A.4.
Table 8.  Results obtained from the corresponding dual graph access structures
$\mathcal{P}$Access Structure $(\cong \Gamma^*)$ $\sigma$ from [22] $\sigma$
$167BDE $$ 17BD+67BE+67DE+BDE $$(\cong \Gamma^*_{62})$$[3/2, 5/3]$$3/2$[14,32]
$356BDE$$35BD+36BE+56DE+BDE$$ (\cong\Gamma^*_{68} )$
$357ABC$$357B+37AB+57C+ABC$$( \cong \Gamma^*_{33}) $$[3/2, 7/4]$
$357ACE$ $ 357+37AE+57CE+ACE $$ (\cong\Gamma^*_{36}) $
$37BCDE $$37BD+37BE+7CDE+BCDE $$(\cong \Gamma^*_{102}) $$[3/2, 11/6]$
$125ADE$$15D+2AE+5DE+ADE $$(\cong \Gamma^*_{14}) $$[5/3, 7/4]$$5/3$[32]
$135ADE$$135D+3AE+5DE+ADE $ $(\cong \Gamma^*_{29} )$
$137BCE$$ 137B+37BE+7CE+BCE $ $(\cong \Gamma^*_{48} ) $$[5/3, 11/6]$
$124BDE$$1BD+2BE+4DE+BDE $$ (\cong \Gamma^*_{9} ) $$[7/4, 11/6]$$ 7/4$ [30,32,15]
$ 125BDE $$ 15BD+2BE+5DE+BDE$$ (\cong \Gamma^*_{22}) $
$ 127BDE $$17BD+27BE+7DE+BDE $$ (\cong \Gamma^*_{40}) $
$ 135BDE $$135BD+3BE+5DE+BDE $$ (\cong \Gamma^*_{42}) $
$ 136BDE $$13BD+36BE+6DE+BDE $$(\cong \Gamma^*_{43}) $
$ 137BDE $$ 137BD+37BE+7DE+BDE $$ (\cong\Gamma^*_{61}) $
$\mathcal{P}$Access Structure $(\cong \Gamma^*)$ $\sigma$ from [22] $\sigma$
$167BDE $$ 17BD+67BE+67DE+BDE $$(\cong \Gamma^*_{62})$$[3/2, 5/3]$$3/2$[14,32]
$356BDE$$35BD+36BE+56DE+BDE$$ (\cong\Gamma^*_{68} )$
$357ABC$$357B+37AB+57C+ABC$$( \cong \Gamma^*_{33}) $$[3/2, 7/4]$
$357ACE$ $ 357+37AE+57CE+ACE $$ (\cong\Gamma^*_{36}) $
$37BCDE $$37BD+37BE+7CDE+BCDE $$(\cong \Gamma^*_{102}) $$[3/2, 11/6]$
$125ADE$$15D+2AE+5DE+ADE $$(\cong \Gamma^*_{14}) $$[5/3, 7/4]$$5/3$[32]
$135ADE$$135D+3AE+5DE+ADE $ $(\cong \Gamma^*_{29} )$
$137BCE$$ 137B+37BE+7CE+BCE $ $(\cong \Gamma^*_{48} ) $$[5/3, 11/6]$
$124BDE$$1BD+2BE+4DE+BDE $$ (\cong \Gamma^*_{9} ) $$[7/4, 11/6]$$ 7/4$ [30,32,15]
$ 125BDE $$ 15BD+2BE+5DE+BDE$$ (\cong \Gamma^*_{22}) $
$ 127BDE $$17BD+27BE+7DE+BDE $$ (\cong \Gamma^*_{40}) $
$ 135BDE $$135BD+3BE+5DE+BDE $$ (\cong \Gamma^*_{42}) $
$ 136BDE $$13BD+36BE+6DE+BDE $$(\cong \Gamma^*_{43}) $
$ 137BDE $$ 137BD+37BE+7DE+BDE $$ (\cong\Gamma^*_{61}) $
Table 9.  Open access structures
$\mathcal{P}$Access structure $\sigma$ [32,22]
$\{3, 5, 7, A, D, E\}$ $ 357D+37AE+57DE+ADE$ $(\cong \Gamma^*_{75})$$[3/2, 5/3]$
$\{3, 5, 7, B, D, E\}$ $ 357BD+37BE+57DE+BDE$ $(\cong \Gamma_{84}^*) $
$\{1, 6, 7, A, D, E\}$$17D+67AE+67DE+ADE$
$ \{3, 5, 7, 9, B, E\} $$3579B+37BE+57E+9BE$$[3/2, 11/6]$
$\mathcal{P}$Access structure $\sigma$ [32,22]
$\{3, 5, 7, A, D, E\}$ $ 357D+37AE+57DE+ADE$ $(\cong \Gamma^*_{75})$$[3/2, 5/3]$
$\{3, 5, 7, B, D, E\}$ $ 357BD+37BE+57DE+BDE$ $(\cong \Gamma_{84}^*) $
$\{1, 6, 7, A, D, E\}$$17D+67AE+67DE+ADE$
$ \{3, 5, 7, 9, B, E\} $$3579B+37BE+57E+9BE$$[3/2, 11/6]$
[1]

Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005

[2]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[3]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[4]

Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001

[5]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[6]

Linyi Qian, Lyu Chen, Zhuo Jin, Rongming Wang. Optimal liability ratio and dividend payment strategies under catastrophic risk. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1443-1461. doi: 10.3934/jimo.2018015

[7]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[8]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[9]

Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072

[10]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[11]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[12]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[13]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[14]

Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609-623. doi: 10.3934/mbe.2015.12.609

[15]

Veena Goswami, Gopinath Panda. Optimal information policy in discrete-time queues with strategic customers. Journal of Industrial & Management Optimization, 2019, 15 (2) : 689-703. doi: 10.3934/jimo.2018065

[16]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

[17]

F. H. Clarke, Yu. S . Ledyaev, R. J. Stern. Proximal techniques of feedback construction. Conference Publications, 1998, 1998 (Special) : 177-194. doi: 10.3934/proc.1998.1998.177

[18]

Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187

[19]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[20]

Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959-977. doi: 10.3934/mbe.2013.10.959

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (90)
  • HTML views (244)
  • Cited by (0)

Other articles
by authors

[Back to Top]