May  2018, 12(2): 231-262. doi: 10.3934/amc.2018016

Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$

1. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China

2. 

Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. 

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

4. 

Department of Mathematical Sciences, Kent State University, 4314 Mahoning Avenue, Warren, OH 44483, USA

5. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

6. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China

7. 

Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand

* Corresponding author: Yuan Cao

Received  January 2016 Revised  November 2017 Published  March 2018

Fund Project: This research is supported in part by National Natural Science Foundation of China (Nos. 11671235, 61571243, 11701336, 11471255) and the National Key Basic Research Program of China (Grant 2013CB834204).

Let $\mathbb{F}_{p^m}$ be a finite field of cardinality $p^m$ and $R = \mathbb{F}_{p^m}[u]/\langle u^2\rangle = \mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$ $(u^2 = 0)$, where $p$ is a prime and $m$ is a positive integer. For any $λ∈ \mathbb{F}_{p^m}^{×}$, an explicit representation for all distinct $λ$-constacyclic codes over $R$ of length $np^s$ is given by a canonical form decomposition for each code, where $s$ and $n$ are arbitrary positive integers satisfying ${\rm gcd}(p,n) = 1$. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length $np^s$ over $R$ are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over $\mathbb{F}_5+u\mathbb{F}_5$ of length $2· 3^t· 5^s$ are listed for any positive integer $t$.

Citation: Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016
References:
[1]

T. Abualrub and I. Siap, Constacyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, J. Franklin Inst., 346 (2009), 520-529.  doi: 10.1016/j.jfranklin.2009.02.001.  Google Scholar

[2]

M. C. V. Amerra and F. R. Nemenzo, On $(1-u)$-cyclic codes over $\mathbb{F}_{p^k}+u\mathbb{F}_{p^k}$, Appl. Math. Lett., 21 (2008), 1129-1133.   Google Scholar

[3]

G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.  doi: 10.1016/j.ffa.2012.10.003.  Google Scholar

[4]

A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255.  doi: 10.1109/18.761278.  Google Scholar

[5]

Y. Cao, A class of 1-generator repeated root quasi-cyclic codes, Des. Codes Cryptogr., 72 (2014), 483-496.  doi: 10.1007/s10623-012-9777-0.  Google Scholar

[6]

Y. Cao and Y. Gao, Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.  doi: 10.1016/j.ffa.2014.10.003.  Google Scholar

[7]

B. ChenH. Q. DinhH. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 37 (2016), 108-130.   Google Scholar

[8]

H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.  doi: 10.1109/TIT.2009.2013015.  Google Scholar

[9]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.   Google Scholar

[10]

H. Q. DinhL. Wang and S. Zhu, Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 31 (2015), 178-201.  doi: 10.1016/j.ffa.2014.09.003.  Google Scholar

[11]

H. Q. DinhS. Dhompongsa and S. Sriboonchitta, On constacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Discrete Math., 340 (2017), 832-849.  doi: 10.1016/j.disc.2016.11.014.  Google Scholar

[12]

H. Q. Dinh, A. Sharma, S. Rani and S. Sriboonchitta, Cyclic and negacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra Appl., (2017), in press. Google Scholar

[13]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[14]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type Ⅱ codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[15]

S. T. DoughertyJ.-L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[16]

T. A. Gulliver and M. Harada, Construction of optimal Type Ⅳ self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 2520-2521.  doi: 10.1109/18.796394.  Google Scholar

[17]

W. C. Huffman, On the decompostion of self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$ with an automorphism of odd prime number, Finite Fields Appl., 13 (2007), 681-712.  doi: 10.1016/j.ffa.2006.02.003.  Google Scholar

[18]

G. H. Norton, A. Sălăgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.  doi: 10.1007/PL00012382.  Google Scholar

[19]

G. H. Norton and A. Sălăgean, On the Hamming distance of linear codes over a finite chain rings, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067.  doi: 10.1109/18.841186.  Google Scholar

[20]

J. F. QianL. N. Zhang and S. Zhu, $(1+u)$-constacyclic and cyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Math. Lett., 19 (2006), 820-823.  doi: 10.1016/j.aml.2005.10.011.  Google Scholar

[21]

Z. -X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Pub Co Inc. 2003.  Google Scholar

show all references

References:
[1]

T. Abualrub and I. Siap, Constacyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, J. Franklin Inst., 346 (2009), 520-529.  doi: 10.1016/j.jfranklin.2009.02.001.  Google Scholar

[2]

M. C. V. Amerra and F. R. Nemenzo, On $(1-u)$-cyclic codes over $\mathbb{F}_{p^k}+u\mathbb{F}_{p^k}$, Appl. Math. Lett., 21 (2008), 1129-1133.   Google Scholar

[3]

G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.  doi: 10.1016/j.ffa.2012.10.003.  Google Scholar

[4]

A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255.  doi: 10.1109/18.761278.  Google Scholar

[5]

Y. Cao, A class of 1-generator repeated root quasi-cyclic codes, Des. Codes Cryptogr., 72 (2014), 483-496.  doi: 10.1007/s10623-012-9777-0.  Google Scholar

[6]

Y. Cao and Y. Gao, Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.  doi: 10.1016/j.ffa.2014.10.003.  Google Scholar

[7]

B. ChenH. Q. DinhH. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 37 (2016), 108-130.   Google Scholar

[8]

H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.  doi: 10.1109/TIT.2009.2013015.  Google Scholar

[9]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.   Google Scholar

[10]

H. Q. DinhL. Wang and S. Zhu, Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 31 (2015), 178-201.  doi: 10.1016/j.ffa.2014.09.003.  Google Scholar

[11]

H. Q. DinhS. Dhompongsa and S. Sriboonchitta, On constacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Discrete Math., 340 (2017), 832-849.  doi: 10.1016/j.disc.2016.11.014.  Google Scholar

[12]

H. Q. Dinh, A. Sharma, S. Rani and S. Sriboonchitta, Cyclic and negacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra Appl., (2017), in press. Google Scholar

[13]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[14]

S. T. DoughertyP. GaboritM. Harada and P. Sole, Type Ⅱ codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[15]

S. T. DoughertyJ.-L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[16]

T. A. Gulliver and M. Harada, Construction of optimal Type Ⅳ self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 2520-2521.  doi: 10.1109/18.796394.  Google Scholar

[17]

W. C. Huffman, On the decompostion of self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$ with an automorphism of odd prime number, Finite Fields Appl., 13 (2007), 681-712.  doi: 10.1016/j.ffa.2006.02.003.  Google Scholar

[18]

G. H. Norton, A. Sălăgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.  doi: 10.1007/PL00012382.  Google Scholar

[19]

G. H. Norton and A. Sălăgean, On the Hamming distance of linear codes over a finite chain rings, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067.  doi: 10.1109/18.841186.  Google Scholar

[20]

J. F. QianL. N. Zhang and S. Zhu, $(1+u)$-constacyclic and cyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Math. Lett., 19 (2006), 820-823.  doi: 10.1016/j.aml.2005.10.011.  Google Scholar

[21]

Z. -X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Pub Co Inc. 2003.  Google Scholar

[1]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (410)
  • HTML views (511)
  • Cited by (15)

[Back to Top]