-
Previous Article
Indiscreet logarithms in finite fields of small characteristic
- AMC Home
- This Issue
- Next Article
Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$
1. | School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China |
2. | Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
3. | Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
4. | Department of Mathematical Sciences, Kent State University, 4314 Mahoning Avenue, Warren, OH 44483, USA |
5. | Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China |
6. | School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China |
7. | Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand |
Let $\mathbb{F}_{p^m}$ be a finite field of cardinality $p^m$ and $R = \mathbb{F}_{p^m}[u]/\langle u^2\rangle = \mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$ $(u^2 = 0)$, where $p$ is a prime and $m$ is a positive integer. For any $λ∈ \mathbb{F}_{p^m}^{×}$, an explicit representation for all distinct $λ$-constacyclic codes over $R$ of length $np^s$ is given by a canonical form decomposition for each code, where $s$ and $n$ are arbitrary positive integers satisfying ${\rm gcd}(p,n) = 1$. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length $np^s$ over $R$ are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over $\mathbb{F}_5+u\mathbb{F}_5$ of length $2· 3^t· 5^s$ are listed for any positive integer $t$.
References:
[1] |
T. Abualrub and I. Siap,
Constacyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, J. Franklin Inst., 346 (2009), 520-529.
doi: 10.1016/j.jfranklin.2009.02.001. |
[2] |
M. C. V. Amerra and F. R. Nemenzo,
On $(1-u)$-cyclic codes over $\mathbb{F}_{p^k}+u\mathbb{F}_{p^k}$, Appl. Math. Lett., 21 (2008), 1129-1133.
|
[3] |
G. K. Bakshi and M. Raka,
Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.
doi: 10.1016/j.ffa.2012.10.003. |
[4] |
A. Bonnecaze and P. Udaya,
Cyclic codes and self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255.
doi: 10.1109/18.761278. |
[5] |
Y. Cao,
A class of 1-generator repeated root quasi-cyclic codes, Des. Codes Cryptogr., 72 (2014), 483-496.
doi: 10.1007/s10623-012-9777-0. |
[6] |
Y. Cao and Y. Gao,
Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.
doi: 10.1016/j.ffa.2014.10.003. |
[7] |
B. Chen, H. Q. Dinh, H. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 37 (2016), 108-130. Google Scholar |
[8] |
H. Q. Dinh,
Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.
doi: 10.1109/TIT.2009.2013015. |
[9] |
H. Q. Dinh,
Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.
|
[10] |
H. Q. Dinh, L. Wang and S. Zhu,
Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 31 (2015), 178-201.
doi: 10.1016/j.ffa.2014.09.003. |
[11] |
H. Q. Dinh, S. Dhompongsa and S. Sriboonchitta,
On constacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Discrete Math., 340 (2017), 832-849.
doi: 10.1016/j.disc.2016.11.014. |
[12] |
H. Q. Dinh, A. Sharma, S. Rani and S. Sriboonchitta, Cyclic and negacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra Appl., (2017), in press. Google Scholar |
[13] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[14] |
S. T. Dougherty, P. Gaborit, M. Harada and P. Sole,
Type Ⅱ codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.
doi: 10.1109/18.746770. |
[15] |
S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu,
Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.
doi: 10.1016/j.ffa.2009.11.004. |
[16] |
T. A. Gulliver and M. Harada,
Construction of optimal Type Ⅳ self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 2520-2521.
doi: 10.1109/18.796394. |
[17] |
W. C. Huffman,
On the decompostion of self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$ with an automorphism of odd prime number, Finite Fields Appl., 13 (2007), 681-712.
doi: 10.1016/j.ffa.2006.02.003. |
[18] |
G. H. Norton,
A. Sălăgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.
doi: 10.1007/PL00012382. |
[19] |
G. H. Norton and A. Sălăgean,
On the Hamming distance of linear codes over a finite chain rings, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067.
doi: 10.1109/18.841186. |
[20] |
J. F. Qian, L. N. Zhang and S. Zhu,
$(1+u)$-constacyclic and cyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Math. Lett., 19 (2006), 820-823.
doi: 10.1016/j.aml.2005.10.011. |
[21] |
Z. -X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Pub Co Inc. 2003. |
show all references
References:
[1] |
T. Abualrub and I. Siap,
Constacyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, J. Franklin Inst., 346 (2009), 520-529.
doi: 10.1016/j.jfranklin.2009.02.001. |
[2] |
M. C. V. Amerra and F. R. Nemenzo,
On $(1-u)$-cyclic codes over $\mathbb{F}_{p^k}+u\mathbb{F}_{p^k}$, Appl. Math. Lett., 21 (2008), 1129-1133.
|
[3] |
G. K. Bakshi and M. Raka,
Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.
doi: 10.1016/j.ffa.2012.10.003. |
[4] |
A. Bonnecaze and P. Udaya,
Cyclic codes and self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255.
doi: 10.1109/18.761278. |
[5] |
Y. Cao,
A class of 1-generator repeated root quasi-cyclic codes, Des. Codes Cryptogr., 72 (2014), 483-496.
doi: 10.1007/s10623-012-9777-0. |
[6] |
Y. Cao and Y. Gao,
Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.
doi: 10.1016/j.ffa.2014.10.003. |
[7] |
B. Chen, H. Q. Dinh, H. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 37 (2016), 108-130. Google Scholar |
[8] |
H. Q. Dinh,
Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.
doi: 10.1109/TIT.2009.2013015. |
[9] |
H. Q. Dinh,
Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.
|
[10] |
H. Q. Dinh, L. Wang and S. Zhu,
Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Finite Fields Appl., 31 (2015), 178-201.
doi: 10.1016/j.ffa.2014.09.003. |
[11] |
H. Q. Dinh, S. Dhompongsa and S. Sriboonchitta,
On constacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, Discrete Math., 340 (2017), 832-849.
doi: 10.1016/j.disc.2016.11.014. |
[12] |
H. Q. Dinh, A. Sharma, S. Rani and S. Sriboonchitta, Cyclic and negacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra Appl., (2017), in press. Google Scholar |
[13] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[14] |
S. T. Dougherty, P. Gaborit, M. Harada and P. Sole,
Type Ⅱ codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.
doi: 10.1109/18.746770. |
[15] |
S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu,
Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.
doi: 10.1016/j.ffa.2009.11.004. |
[16] |
T. A. Gulliver and M. Harada,
Construction of optimal Type Ⅳ self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 2520-2521.
doi: 10.1109/18.796394. |
[17] |
W. C. Huffman,
On the decompostion of self-dual codes over $\mathbb{F}_2+u\mathbb{F}_2$ with an automorphism of odd prime number, Finite Fields Appl., 13 (2007), 681-712.
doi: 10.1016/j.ffa.2006.02.003. |
[18] |
G. H. Norton,
A. Sălăgean, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.
doi: 10.1007/PL00012382. |
[19] |
G. H. Norton and A. Sălăgean,
On the Hamming distance of linear codes over a finite chain rings, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067.
doi: 10.1109/18.841186. |
[20] |
J. F. Qian, L. N. Zhang and S. Zhu,
$(1+u)$-constacyclic and cyclic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Math. Lett., 19 (2006), 820-823.
doi: 10.1016/j.aml.2005.10.011. |
[21] |
Z. -X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Pub Co Inc. 2003. |
[1] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]