[1]
|
G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, Weakness of $\mathbb{F}_{3^{6 · 509\;\;}}$ for discrete logarithm cryptography, in: Pairing-Based Cryptography—Pairing 2013, Springer, LNCS 8365 (2014), 20–44.
|
[2]
|
G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, Computing discrete logarithms in $\mathbb{F}_{3^{6 · 137}}\;\;$ and $\mathbb{F}_{3^{6 · 163}}\;\;$ using Magma, in: Arithmetic of Finite Fields, Springer, LNCS 9061 (2015), 3–22.
|
[3]
|
G. Adj, I. Canales-Martínez, N. Cruz-Cortés, A. Menezes, T. Oliveira, L. RiveraZamarripa and F. Rodríguez-Henríquez, Computing discrete logarithms in cryptographicallyinteresting characteristic-three finite fields, IACR Cryptology ePrint Archive, (2016), 19 pages, eprint. iacr. org/2016/914.
|
[4]
|
L. M. Adleman, A subexponential algorithm for the discrete logarithm problem with applications to cryptography, in: 20th Annual Symposium on Foundations of Computer Science, (1979), 55–60.
|
[5]
|
L. M. Adleman, The function field sieve, in: Algorithmic Number Theory, Springer, LNCS 877 (1994), 108–121.
|
[6]
|
L. M. Adleman and M.-D. A. Huang, Function field sieve method for discrete logarithms over finite fields, Inform. and Comput., 151 (1999), 5-16.
doi: 10.1006/inco.1998.2761.
|
[7]
|
R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann (the CARAMEL group), Discrete logarithm in GF(2809) with FFS, in: Public-Key Cryptography—PKC 2014, Springer, LNCS 8383 (2014), 221–238.
|
[8]
|
R. Barbulescu, P. Gaudry, A. Guillevic and F. Morain, Improving NFS for the discrete logarithm problem in non-prime finite fields, in: Advances in Cryptology—EUROCRYPT 2015, Springer, LNCS 9056 (2015), 129–155.
|
[9]
|
R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, in: Advances in Cryptology—EUROCRYPT 2014, Springer, LNCS 8441 (2014), 1–16.
|
[10]
|
R. Barbulescu, P. Gaudry and T. Kleinjung, The Tower Number Field Sieve, in: Advances in Cryptology—ASIACRYPT 2015, Springer, LNCS 9453 (2015), 31–55.
|
[11]
|
R. Barbulescu and T. Kim, Extended tower number field sieve: A new complexity for the medium prime case, in: Advances in Cryptology—CRYPTO 2016, Springer, LNCS 9814 (2016), 543–571.
|
[12]
|
A. W. Bluher, On $x^{q+1} + a x + b$, Finite Fields Appl., 10 (2004), 285-305.
doi: 10.1016/j.ffa.2003.08.004.
|
[13]
|
D. Boneh and M. Frapringer, LNCS 2139 (2001nklin, Identity-based encryption from the Weil pairing, in: Advances in Cryptology—CRYPTO 2001, S), 213–229.
|
[14]
|
E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning 'factorisatio numerorum', J. Number Theory, 17 (1983), 1-28.
doi: 10.1016/0022-314X(83)90002-1.
|
[15]
|
A. Commeine and I. Semaev, An algorithm to solve the discrete logarithm problem with the number field sieve, in: Public Key Cryptography—PKC 2006, Springer, LNCS 3958 (2006), 174–190.
|
[16]
|
D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE Trans. Inform. Theory, 30 (1984), 587-594.
doi: 10.1109/TIT.1984.1056941.
|
[17]
|
C. Diem, On the discrete logarithm problem in elliptic curves, Compositio Math., 147 (2011), 75-104.
doi: 10.1112/S0010437X10005075.
|
[18]
|
W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, 22 (1976), 644-654.
doi: 10.1109/TIT.1976.1055638.
|
[19]
|
T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, in: Advances in Cryptology—CRYPTO '84, Springer, LNCS 196 (1985), 10–18.
|
[20]
|
A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algorithms, Acta Arithmetica, 102 (2002), 83-103.
doi: 10.4064/aa102-1-6.
|
[21]
|
S. D. Galbraith, Supersingular curves in cryptography, in: Advances in Cryptology—ASIACRYPT 2001, Springer, LNCS 2248 (2001), 495–513.
|
[22]
|
C. F. Gauß, Disquisitiones Arithmeticae, Translated into English by Arthur A. Clarke, S. J. Yale University Press, New Haven, Conn. -London, 1966.
|
[23]
|
F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in $\mathbb{F}_{2^{1971}}\;\;$ and $\mathbb{F}_{2^{3164}}\;\;$, in: Advances in Cryptology—CRYPTO 2013, Springer, LNCS 8043 (2013), 109–128.
|
[24]
|
F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, Solving a 6120-bit DLP on a desktop computer, in: Selected Areas in Cryptography—SAC 2013, Springer, LNCS 8282 (2014), 136–152.
|
[25]
|
D. M. Gordon, Discrete logarithms in ${\rm GF}(p)$ using the number field sieve, SIAM J. Discrete Math., 6 (1993), 124-138.
doi: 10.1137/0406010.
|
[26]
|
D. M. Gordon and K. S. McCurley, Massively parallel computation of discrete logarithms, in: Advances in Cryptology—CRYPTO'92, Springer, LNCS 740 (1993), 312–323.
|
[27]
|
R. Granger, T. Kleinjung and J. Zumbrägel, Breaking '128-bit secure' supersingular binary curves, in: Advances in Cryptology—CRYPTO 2014, Springer, LNCS 8617 (2014), 126–145.
|
[28]
|
R. Granger, T. Kleinjung and J. Zumbrägel, On the powers of 2, IACR Cryptology ePrint Archive, (2014), 18 pages, eprint. iacr. org/2014/300.
|
[29]
|
R. Granger, T. Kleinjung and J. Zumbrägel, On the discrete logarithm problem in finite fields of fixed characteristic, Trans. Amer. Math. Soc., 370 (2018), 3129-3145.
doi: 10.1090/tran/7027.
|
[30]
|
T. Hayashi, T. Shimoyama, N. Shinohara, T. Takagi, Breaking pairing-based cryptosystems using ηT pairing over GF(397), in: Advances in Cryptology—ASIACRYPT 2012, Springer, LNCS 7658 (2012), 43–60.
|
[31]
|
T. Hayashi, N. Shinohara, L. Wang, S. I. Matsuo, M. Shirase and T. Takagi, Solving a 676-bit discrete logarithm problem in GF(36n), in: Public Key Cryptography—PKC 2010, Springer, LNCS 6056 (2010), 351–367.
|
[32]
|
T. Helleseth and A. Kholosha, $\smash{x^{2^l+1}}+ x + a$ and related affine polynomials over $GF(2^k)$, Cryptogr. Commun., 2 (2010), 85-109.
doi: 10.1007/s12095-009-0018-y.
|
[33]
|
A. Joux, A one round protocol for tripartite Diffie-Hellman, in: Algorithmic Number Theory, Springer, LNCS 1838 (2000), 385–393.
|
[34]
|
A. Joux, Faster index calculus for the medium prime case; application to 1175-bit and 1425-bit finite fields, in: Advances in Cryptology—EUROCRYPT 2013, Springer, LNCS 7881 (2013), 177–193.
|
[35]
|
A. Joux, A new index calculus algorithm with complexity L(1/4 + o(1)) in small characteristic, in: Selected Areas in Cryptography—SAC 2013, Springer, LNCS 8282 (2014), 355–379.
|
[36]
|
A. Joux and R. Lercier, The function field sieve is quite special, in: Algorithmic Number Theory, Springer, LNCS 2369 (2002), 431–445.
|
[37]
|
A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields, Math. Comp., 72 (2003), 953-967.
doi: 10.1090/S0025-5718-02-01482-5.
|
[38]
|
A. Joux and R. Lercier, The function field sieve in the medium prime case, in: Advances in Cryptology—EUROCRYPT 2006, Springer, LNCS 4004 (2006), 254–270.
|
[39]
|
A. Joux, R. Lercier, N. Smart and F. Vercauteren, The number field sieve in the medium prime case, in: Advances in Cryptology—CRYPTO 2006, Springer, LNCS 4117 (2006), 326–344.
|
[40]
|
A. Joux, A. M. Odlyzko and C. Pierrot, The past, evolving present and future of discrete logarithm, in: Open Problems in Mathematical and Computational Science, Springer (2014), 5–36.
|
[41]
|
A. Joux and C. Pierrot, Improving the polynomial time precomputation of Frobenius representation discrete logarithm algorithms, in: Advances in Cryptology—ASIACRYPT 2014, Springer, LNCS 8873 (2014), 378–397.
|
[42]
|
M. Kalkbrener, An upper bound on the number of monomials in determinants of sparse matrices with symbolic entries, Mathematica Pannonica, 8 (1997), 73-82.
|
[43]
|
T. Kim and J. Jeong, Extended tower number field sieve with application to finite fields of arbitrary composite extension degree, in: Public-Key Cryptography-PKC 2017, 10174 (2017), 388-408.
|
[44]
|
B. A. LaMacchia and A. M. Odlyzko, Solving large sparse linear systems over finite fields, in: Advances in Cryptology—CRYPTO'90, Springer, LNCS 537 (1991), 109–133.
|
[45]
|
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards, 45 (1950), 255-282.
doi: 10.6028/jres.045.026.
|
[46]
|
A. K. Lenstra and H. W. Lenstra, Jr, Algorithms in number theory, in: Handbook of Theoretical Computer Science (A): Algorithms and Complexity, Elsevier, (1990), 673–715.
|
[47]
|
A. K. Lenstra and H. W. Lenstra, Jr (eds), The Development of the Number Field Sieve, Springer, 1993.
|
[48]
|
A. K. Lenstra, H. W. Lenstra Jr and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982), 515-534.
doi: 10.1007/BF01457454.
|
[49]
|
H. W. Lenstra Jr, Finding isomorphisms between finite fields, Math. Comp., 56 (1991), 329-347.
doi: 10.1090/S0025-5718-1991-1052099-2.
|
[50]
|
R. Lovorn, Rigorous Subexponential Algorithms for Discrete Logarithms over Finite Fields, Ph. D. Thesis, University of Georgia, 1992.
|
[51]
|
V. I. Nechaev, On the complexity of a deterministic algorithm for a discrete logarithm, Mat. Zametki, 55 (1994), 91-101.
doi: 10.1007/BF02113297.
|
[52]
|
J. Neukirch, Algebraic Number Theory, Translated from the 1992 German original, Springer, 1999.
|
[53]
|
A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, in: Advances in Cryptology—CRYPTO'84, Springer, LNCS 209 (1985), 224–314.
|
[54]
|
A. M. Odlyzko, Discrete logarithms: the past and the future, Des. Codes Cryptogr., 19 (2000), 129-145.
doi: 10.1023/A:1008350005447.
|
[55]
|
S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over ${\rm GF}(p)$ and its cryptographic significance, IEEE Trans. Inform. Theory, 24 (1978), 106-110.
doi: 10.1109/TIT.1978.1055817.
|
[56]
|
J. M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp., 32 (1978), 918-924.
doi: 10.1090/S0025-5718-1978-0491431-9.
|
[57]
|
C. Pomerance, Analysis and comparison of some integer factoring algorithms, in: Computational Methods in Number Theory, Math. Centre Tracts, Math. Centrum, Amsterdam, 154 (1982), 89–139.
|
[58]
|
C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, in: Discrete Algorithms and Complexity, Perspect. Comput., Academic Press, 15 (1987), 119–143.
|
[59]
|
R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems based on pairing, in: Symposium on Cryptography and Information Security, Okinawa, Japan, (2000), 26–28.
|
[60]
|
P. Sarkar and S. Singh, A general polynomial selection method and new asymptotic complexities for the tower number field sieve algorithm, in: Advances in Cryptology—ASIACRYPT 2016, Springer, LNCS 10031 (2016), 37–62.
|
[61]
|
O. Schirokauer, Discrete logarithms and local units, Philos. Trans. Roy. Soc. London Ser. A, 345 (1993), 409-423.
doi: 10.1098/rsta.1993.0139.
|
[62]
|
O. Schirokauer, Using number fields to compute logarithms in finite fields, Math. Comp., 69 (2000), 1267-1283.
doi: 10.1090/S0025-5718-99-01137-0.
|
[63]
|
O. Schirokauer, Virtual logarithms, J. Algorithms, 57 (2005), 140-147.
doi: 10.1016/j.jalgor.2004.11.004.
|
[64]
|
C.-P. Schnorr, Efficient signature generation by smart cards, J. Cryptology, 4 (1991), 161-174.
doi: 10.1007/BF00196725.
|
[65]
|
I. A. Semaev, Special prime numbers and discrete logs in finite prime fields, Math. Comp., 71 (2002), 363-377.
doi: 10.1090/S0025-5718-00-01308-9.
|
[66]
|
P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Computing J., 26 (1997), 1484-1509.
doi: 10.1137/S0097539795293172.
|
[67]
|
V. Shoup, Lower bounds for discrete logarithms and related problems, in: Advances in Cryptology—EUROCRYPT'97, Springer, LNCS 1223 (1997), 256–266.
|
[68]
|
D. Wan, Generators and irreducible polynomials over finite fields, Math. Comp., 66 (1997), 1195-1212.
doi: 10.1090/S0025-5718-97-00835-1.
|
[69]
|
D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory, 32 (1986), 54-62.
doi: 10.1109/TIT.1986.1057137.
|