-
Previous Article
Several infinite families of p-ary weakly regular bent functions
- AMC Home
- This Issue
-
Next Article
Indiscreet logarithms in finite fields of small characteristic
Hilbert quasi-polynomial for order domains and application to coding theory
Università degli Studi di Trento, Trento, Italy |
We present an application of Hilbert quasi-polynomials to order domains, allowing the effective check of the second order-domain condition in a direct way. We also provide an improved algorithm for the computation of the related Hilbert quasi-polynomials. This allows to identify order domain codes more easily.
References:
[1] |
H. E. Andersen and O. Geil,
Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), 92-123.
doi: 10.1016/j.ffa.2006.12.004. |
[2] |
M. Caboara and C. Mascia, A partial characterization of Hilbert quasi-polynomials in the non-standard case, arXiv: 1607.05468, (2016). |
[3] |
S. Fanali, M. Giulietti and I. Platoni,
On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012), 107-120.
doi: 10.3934/amc.2012.6.107. |
[4] |
J. Fitzgerald and R. F. Lax,
Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr., 13 (1998), 147-158.
doi: 10.1023/A:1008274212057. |
[5] |
A. Garcia, C. Güneri and H. Stichtenoth,
A generalization of the Giulietti--Korchmáros maximal curve, Advances in Geometry, 10 (2010), 427-434.
|
[6] |
O. Geil, Algebraic geometry codes from order domains, In M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Groebner Bases, Coding, and Cryptography, RISC Book Series, Springer, (2009), 121–141.
doi: 10.1007/978-3-540-93806-4_8. |
[7] |
O. Geil and R. Pellikaan,
On the structure of order domains, Finite Fields Appl., 8 (2002), 369-396.
doi: 10.1006/ffta.2001.0347. |
[8] |
O. Geil,
Evaluation codes from an affine-variety codes perspective, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol, 5 (2008), 153-180.
|
[9] |
M. Giulietti and G. Korchmáros,
A new family of maximal curves over a finite field, Mathematische Annalen, 343 (2009), 229-245.
doi: 10.1007/s00208-008-0270-z. |
[10] |
J. W. L. Glaisher,
Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math, 40 (1909), 275-348.
|
[11] |
V. D. Goppa,
Codes associated with divisors, Problem of Inform. Trans., 13 (1977), 33-39.
|
[12] |
T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, 1/2 (1998), 871–961. |
[13] |
M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Science & Business Media, 2005. |
[14] |
D. V. Lee,
On the power-series expansion of a rational function, Acta Arithmetica, 62 (1992), 229-255.
doi: 10.4064/aa-62-3-229-255. |
[15] |
C. Marcolla, E. Orsini and M. Sala,
Improved decoding of affine-variety codes, Journal of Pure and Applied Algebra, 216 (2012), 1533-1565.
doi: 10.1016/j.jpaa.2012.01.002. |
[16] |
R. Matsumoto,
Miura's Generalization of One-Point AG codes is Equivalent to Høholdt, van Lint and Pellikaan's generalization, IEICE Trans. Fund., E82-A.10 (1999), 2007-2010.
|
[17] |
R. Matsumoto and S. Miura,
On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83 (2000), 923-926.
|
[18] |
S. Miura,
Linear Codes on Affine Algebraic Varieties, IEICE Trans. Fundamentals, 1996. |
[19] |
R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1983. |
[20] |
J. J. Sylvester,
On subvariants, ie semi-invariants to binary quantics of an unlimited order, American Journal of Mathematics, 5 (1882), 79-136.
doi: 10.2307/2369536. |
[21] |
J. J. Sylvester,
Computational methods in commutative algebra and algebraic geometry, Springer Science & Business Media, 2 (2004).
|
show all references
References:
[1] |
H. E. Andersen and O. Geil,
Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), 92-123.
doi: 10.1016/j.ffa.2006.12.004. |
[2] |
M. Caboara and C. Mascia, A partial characterization of Hilbert quasi-polynomials in the non-standard case, arXiv: 1607.05468, (2016). |
[3] |
S. Fanali, M. Giulietti and I. Platoni,
On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012), 107-120.
doi: 10.3934/amc.2012.6.107. |
[4] |
J. Fitzgerald and R. F. Lax,
Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr., 13 (1998), 147-158.
doi: 10.1023/A:1008274212057. |
[5] |
A. Garcia, C. Güneri and H. Stichtenoth,
A generalization of the Giulietti--Korchmáros maximal curve, Advances in Geometry, 10 (2010), 427-434.
|
[6] |
O. Geil, Algebraic geometry codes from order domains, In M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Groebner Bases, Coding, and Cryptography, RISC Book Series, Springer, (2009), 121–141.
doi: 10.1007/978-3-540-93806-4_8. |
[7] |
O. Geil and R. Pellikaan,
On the structure of order domains, Finite Fields Appl., 8 (2002), 369-396.
doi: 10.1006/ffta.2001.0347. |
[8] |
O. Geil,
Evaluation codes from an affine-variety codes perspective, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol, 5 (2008), 153-180.
|
[9] |
M. Giulietti and G. Korchmáros,
A new family of maximal curves over a finite field, Mathematische Annalen, 343 (2009), 229-245.
doi: 10.1007/s00208-008-0270-z. |
[10] |
J. W. L. Glaisher,
Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math, 40 (1909), 275-348.
|
[11] |
V. D. Goppa,
Codes associated with divisors, Problem of Inform. Trans., 13 (1977), 33-39.
|
[12] |
T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, 1/2 (1998), 871–961. |
[13] |
M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Science & Business Media, 2005. |
[14] |
D. V. Lee,
On the power-series expansion of a rational function, Acta Arithmetica, 62 (1992), 229-255.
doi: 10.4064/aa-62-3-229-255. |
[15] |
C. Marcolla, E. Orsini and M. Sala,
Improved decoding of affine-variety codes, Journal of Pure and Applied Algebra, 216 (2012), 1533-1565.
doi: 10.1016/j.jpaa.2012.01.002. |
[16] |
R. Matsumoto,
Miura's Generalization of One-Point AG codes is Equivalent to Høholdt, van Lint and Pellikaan's generalization, IEICE Trans. Fund., E82-A.10 (1999), 2007-2010.
|
[17] |
R. Matsumoto and S. Miura,
On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83 (2000), 923-926.
|
[18] |
S. Miura,
Linear Codes on Affine Algebraic Varieties, IEICE Trans. Fundamentals, 1996. |
[19] |
R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1983. |
[20] |
J. J. Sylvester,
On subvariants, ie semi-invariants to binary quantics of an unlimited order, American Journal of Mathematics, 5 (1882), 79-136.
doi: 10.2307/2369536. |
[21] |
J. J. Sylvester,
Computational methods in commutative algebra and algebraic geometry, Springer Science & Business Media, 2 (2004).
|
[1] |
Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077 |
[2] |
Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002 |
[3] |
Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105 |
[4] |
George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035 |
[5] |
Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control and Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177 |
[6] |
Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009 |
[7] |
Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022066 |
[8] |
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 |
[9] |
A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769 |
[10] |
Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1505-1517. doi: 10.3934/jimo.2021030 |
[11] |
Na Peng, Jiayu Han, Jing An. An efficient finite element method and error analysis for fourth order problems in a spherical domain. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022021 |
[12] |
Kun Li, Ting-Zhu Huang, Liang Li, Ying Zhao, Stéphane Lanteri. A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022084 |
[13] |
Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531 |
[14] |
Terry Shue Chien Lau, Chik How Tan. Polynomial-time plaintext recovery attacks on the IKKR code-based cryptosystems. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020132 |
[15] |
Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015 |
[16] |
Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150 |
[17] |
Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177 |
[18] |
Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032 |
[19] |
Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103 |
[20] |
Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]