May  2018, 12(2): 387-413. doi: 10.3934/amc.2018024

New families of strictly optimal frequency hopping sequence sets

Department of Mathematics, Ningbo University, Ningbo 315211, China

Received  June 2017 Revised  November 2017 Published  March 2018

Fund Project: The first author is supported by the NSFC under Grants 11701303, and K.C.Wong Magna Fund in Ningbo University.

Frequency hopping sequences (FHSs) with favorable partial Hamming correlation properties have important applications in many synchronization and multiple-access systems. In this paper, we investigate constructions of FHS sets with optimal partial Hamming correlation. We present several direct constructions for balanced nested cyclic difference packings (BNCDPs) and balanced nested cyclic relative difference packings (BNCRDPs) by using trace functions and discrete logarithm. We also show three recursive constructions for FHS sets with partial Hamming correlation, which are based on cyclic difference matrices and discrete logarithm. Combing these BNCDPs, BNCRDPs and three recursive constructions, we obtain infinitely many new strictly optimal FHS sets with respect to the Peng-Fan bounds.

Citation: Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024
References:
[1]

J. Bao and L. Ji, Frequency hopping sequences with optimal partial hamming correlation, IEEE Trans. Inf. Theory, 62 (2016), 3768-3783.  doi: 10.1109/TIT.2016.2551225.  Google Scholar

[2]

J. Bao and L. Ji, New families of optimal frequency hopping sequence sets, IEEE Trans. Inf. Theory, 62 (2016), 5209-5224.  doi: 10.1109/TIT.2016.2589258.  Google Scholar

[3]

Bluetooth Special Interest Group (SIG), Washington, DC, USA. (2003, Nov.). Specification of the Bluetooth Systems-Core [Online]. Available: http://www.bluetooth.org Google Scholar

[4]

H. CaiZ. ZhouY. Yang and X. Tang, A new construction of frequency hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790.  doi: 10.1109/TIT.2014.2332996.  Google Scholar

[5]

H. CaiY. YangZ. Zhou and X. Tang, Strictly optimal frequency-hopping sequence sets with optimal family sizes, IEEE Trans. Inf. Theory, 62 (2016), 1087-1093.  doi: 10.1109/TIT.2015.2512859.  Google Scholar

[6]

B. ChenL. LinS. Ling and H. Liu, Three new classes of optimal frequency-hopping sequence sets, Des. Codes Cryptogr., 83 (2017), 219-232.  doi: 10.1007/s10623-016-0220-9.  Google Scholar

[7]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.  Google Scholar

[8]

J.-H. ChungG. Gong and K. Yang, New families of optimal frequency-hopping sequences by composite lengths, IEEE Trans. Inf. Theory, 60 (2014), 3688-3697.  doi: 10.1109/TIT.2014.2315207.  Google Scholar

[9]

J.-H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791.  doi: 10.1109/TIT.2009.2032742.  Google Scholar

[10]

J.-H. Chung and K. Yang, $k$ -fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.  doi: 10.1109/TIT.2011.2112235.  Google Scholar

[11]

J.-H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010), 1685-1693.  doi: 10.1109/TIT.2010.2040888.  Google Scholar

[12]

C. J. Colbourn, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2010. doi: 10. 1201/9781420049954.  Google Scholar

[13]

C. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[14]

C. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.  Google Scholar

[15]

C. DingY. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.  doi: 10.1109/TIT.2010.2048504.  Google Scholar

[16]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 3741-3745.  doi: 10.1109/TIT.2008.926410.  Google Scholar

[17]

Y.-C. EunS.-Y. JinY.-P. Hong and H.-Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004), 2438-2442.  doi: 10.1109/TIT.2004.834792.  Google Scholar

[18]

C. FanH. Cai and X. Tang, A combinatorial construction for strictly optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 62 (2016), 4769-4774.  doi: 10.1109/TIT.2016.2556710.  Google Scholar

[19]

P. Fan and M. Darnell, Sequence Design for Communications Applications, London, U. K. : Wiley, 1996. Google Scholar

[20]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.  Google Scholar

[21]

G. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.  doi: 10.1016/j.jcta.2006.03.019.  Google Scholar

[22]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto-and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.  Google Scholar

[23]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming-correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94.   Google Scholar

[24]

D. Peng and P. Fan, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[25]

W. RenF. Fu and Z. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014), 423-434.  doi: 10.1007/s10623-012-9774-3.  Google Scholar

[26]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998), 1492-1503.  doi: 10.1109/18.681324.  Google Scholar

[27]

L. Yang and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., 21 (2004), 26-54.   Google Scholar

[28]

Y. YangX. TangP. Udaya and D. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613.  doi: 10.1109/TIT.2011.2162571.  Google Scholar

[29]

X. ZengH. CaiX. Tang and Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012), 4899-4907.  doi: 10.1109/TIT.2012.2195771.  Google Scholar

[30]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.  Google Scholar

[31]

Z. ZhouX. TangD. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 3831-3840.  doi: 10.1109/TIT.2011.2137290.  Google Scholar

[32]

Z. ZhouX. TangX. Niu and U. Parampalli, New classes of frequency hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458.  doi: 10.1109/TIT.2011.2167126.  Google Scholar

show all references

References:
[1]

J. Bao and L. Ji, Frequency hopping sequences with optimal partial hamming correlation, IEEE Trans. Inf. Theory, 62 (2016), 3768-3783.  doi: 10.1109/TIT.2016.2551225.  Google Scholar

[2]

J. Bao and L. Ji, New families of optimal frequency hopping sequence sets, IEEE Trans. Inf. Theory, 62 (2016), 5209-5224.  doi: 10.1109/TIT.2016.2589258.  Google Scholar

[3]

Bluetooth Special Interest Group (SIG), Washington, DC, USA. (2003, Nov.). Specification of the Bluetooth Systems-Core [Online]. Available: http://www.bluetooth.org Google Scholar

[4]

H. CaiZ. ZhouY. Yang and X. Tang, A new construction of frequency hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790.  doi: 10.1109/TIT.2014.2332996.  Google Scholar

[5]

H. CaiY. YangZ. Zhou and X. Tang, Strictly optimal frequency-hopping sequence sets with optimal family sizes, IEEE Trans. Inf. Theory, 62 (2016), 1087-1093.  doi: 10.1109/TIT.2015.2512859.  Google Scholar

[6]

B. ChenL. LinS. Ling and H. Liu, Three new classes of optimal frequency-hopping sequence sets, Des. Codes Cryptogr., 83 (2017), 219-232.  doi: 10.1007/s10623-016-0220-9.  Google Scholar

[7]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.  Google Scholar

[8]

J.-H. ChungG. Gong and K. Yang, New families of optimal frequency-hopping sequences by composite lengths, IEEE Trans. Inf. Theory, 60 (2014), 3688-3697.  doi: 10.1109/TIT.2014.2315207.  Google Scholar

[9]

J.-H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791.  doi: 10.1109/TIT.2009.2032742.  Google Scholar

[10]

J.-H. Chung and K. Yang, $k$ -fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.  doi: 10.1109/TIT.2011.2112235.  Google Scholar

[11]

J.-H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010), 1685-1693.  doi: 10.1109/TIT.2010.2040888.  Google Scholar

[12]

C. J. Colbourn, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2010. doi: 10. 1201/9781420049954.  Google Scholar

[13]

C. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[14]

C. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.  Google Scholar

[15]

C. DingY. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.  doi: 10.1109/TIT.2010.2048504.  Google Scholar

[16]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 3741-3745.  doi: 10.1109/TIT.2008.926410.  Google Scholar

[17]

Y.-C. EunS.-Y. JinY.-P. Hong and H.-Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004), 2438-2442.  doi: 10.1109/TIT.2004.834792.  Google Scholar

[18]

C. FanH. Cai and X. Tang, A combinatorial construction for strictly optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 62 (2016), 4769-4774.  doi: 10.1109/TIT.2016.2556710.  Google Scholar

[19]

P. Fan and M. Darnell, Sequence Design for Communications Applications, London, U. K. : Wiley, 1996. Google Scholar

[20]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.  Google Scholar

[21]

G. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.  doi: 10.1016/j.jcta.2006.03.019.  Google Scholar

[22]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto-and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.  Google Scholar

[23]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming-correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94.   Google Scholar

[24]

D. Peng and P. Fan, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[25]

W. RenF. Fu and Z. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014), 423-434.  doi: 10.1007/s10623-012-9774-3.  Google Scholar

[26]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998), 1492-1503.  doi: 10.1109/18.681324.  Google Scholar

[27]

L. Yang and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., 21 (2004), 26-54.   Google Scholar

[28]

Y. YangX. TangP. Udaya and D. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613.  doi: 10.1109/TIT.2011.2162571.  Google Scholar

[29]

X. ZengH. CaiX. Tang and Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012), 4899-4907.  doi: 10.1109/TIT.2012.2195771.  Google Scholar

[30]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.  Google Scholar

[31]

Z. ZhouX. TangD. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 3831-3840.  doi: 10.1109/TIT.2011.2137290.  Google Scholar

[32]

Z. ZhouX. TangX. Niu and U. Parampalli, New classes of frequency hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458.  doi: 10.1109/TIT.2011.2167126.  Google Scholar

Table Ⅰ.  SOME KNOWN FHS SETS WITH OPTIMA HAMMING CORRELATION
LengthNumber of sequences $H_{max}$Alphabet sizeConstraintsReference
$p(q-1)$ $\left\lfloor \frac{c}{p}\right\rfloor$ $pd$ $c+1$ $q-1=cd$, $c\geq p(d+1)$, gcd$(p, q-1)=1$[25]
$q^m-1$ $q^u$ $q^{m-u}$ $q^u$ $m > u \geq 1$[31]
$\frac{q^m-1}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $q^u$ $d|q-1$, $ m > u \geq 1$, gcd$(d, m)=1$[31]
$\frac{q+1}{d}$ $d(q-1)$ $1$ $q$ $q+1\equiv d \pmod {2d}$[15]
$2^{2u}+1$ $2^{2u}-1$ $2^u+1$ $2^u$[13]
$up^2$ $\left\lfloor \frac{p}{u}\right\rfloor$ $up$ $p$ $ p>u\geq 2$[9]
$u\frac{q^m-1}{d}$ $\left\lfloor \frac{d}{u}\right\rfloor$ $u\frac{q^{m-1}-1}{d}$ $q$ $ d\geq u \geq 2$, $d|q-1$, gcd$(m, d)=1$[9]
$v$ $f$ $e$ $\frac{v-1}{e}+1$ $v$ is not a prime or $v$ is a prime with $f\geq e >1$[30]
$\frac{w(q^m-1)}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $wq^u$ $d|q-1$, gcd$(d, m)=1$, $q_1>q^{m-u}$, $m > u \geq 1$[2]
$vw$ $f$ $e$ $\frac{v-1}{e}w+\frac{w-1}{e^{'}}+1$ $e\geq e'\geq 2$, $v\geq e^2$, $q_1\geq p_1> 2e$[2]
$vwu(q-1)$ $\lfloor \frac{c}{u}\rfloor$ $ud$ $cvw+\frac{(v-1)w}{e}+\frac{w-1}{e^{'}}+1$ $q-1=cd$, $c\geq u(d+1)$, $d\geq e\geq e'\geq 2$, gcd$(u, q-1)=1$, $q_1 \geq p_1> q-1$[2]
$vu(q-1)$ $\lfloor\frac{f}{u}\rfloor$ $eu$ $\frac{vq-q}{e}+c+1$ $q-1=cd$, $c \geq u(d+1)$, gcd$(u, q-1)=1$, $q\geq \max\{p_1-1, 4ue\}$, $e\geq d$, $p_1> 2ue$, $v \geq 4e^2u$[2]
$m, u, c$ and $d$ are positive integers;
$p$ is a prime and $q$ is a prime power;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 <p_2<\ldots<p_s$;
$e$ is an integer such that $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$e'$ is an integer such that $e'|gcd(q_1-1, q_2-1, \ldots, q_t-1)$
LengthNumber of sequences $H_{max}$Alphabet sizeConstraintsReference
$p(q-1)$ $\left\lfloor \frac{c}{p}\right\rfloor$ $pd$ $c+1$ $q-1=cd$, $c\geq p(d+1)$, gcd$(p, q-1)=1$[25]
$q^m-1$ $q^u$ $q^{m-u}$ $q^u$ $m > u \geq 1$[31]
$\frac{q^m-1}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $q^u$ $d|q-1$, $ m > u \geq 1$, gcd$(d, m)=1$[31]
$\frac{q+1}{d}$ $d(q-1)$ $1$ $q$ $q+1\equiv d \pmod {2d}$[15]
$2^{2u}+1$ $2^{2u}-1$ $2^u+1$ $2^u$[13]
$up^2$ $\left\lfloor \frac{p}{u}\right\rfloor$ $up$ $p$ $ p>u\geq 2$[9]
$u\frac{q^m-1}{d}$ $\left\lfloor \frac{d}{u}\right\rfloor$ $u\frac{q^{m-1}-1}{d}$ $q$ $ d\geq u \geq 2$, $d|q-1$, gcd$(m, d)=1$[9]
$v$ $f$ $e$ $\frac{v-1}{e}+1$ $v$ is not a prime or $v$ is a prime with $f\geq e >1$[30]
$\frac{w(q^m-1)}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $wq^u$ $d|q-1$, gcd$(d, m)=1$, $q_1>q^{m-u}$, $m > u \geq 1$[2]
$vw$ $f$ $e$ $\frac{v-1}{e}w+\frac{w-1}{e^{'}}+1$ $e\geq e'\geq 2$, $v\geq e^2$, $q_1\geq p_1> 2e$[2]
$vwu(q-1)$ $\lfloor \frac{c}{u}\rfloor$ $ud$ $cvw+\frac{(v-1)w}{e}+\frac{w-1}{e^{'}}+1$ $q-1=cd$, $c\geq u(d+1)$, $d\geq e\geq e'\geq 2$, gcd$(u, q-1)=1$, $q_1 \geq p_1> q-1$[2]
$vu(q-1)$ $\lfloor\frac{f}{u}\rfloor$ $eu$ $\frac{vq-q}{e}+c+1$ $q-1=cd$, $c \geq u(d+1)$, gcd$(u, q-1)=1$, $q\geq \max\{p_1-1, 4ue\}$, $e\geq d$, $p_1> 2ue$, $v \geq 4e^2u$[2]
$m, u, c$ and $d$ are positive integers;
$p$ is a prime and $q$ is a prime power;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 <p_2<\ldots<p_s$;
$e$ is an integer such that $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$e'$ is an integer such that $e'|gcd(q_1-1, q_2-1, \ldots, q_t-1)$
Table Ⅱ.  SOME KNOWN FHS SETS WITH OPTIMAL PARTIAL HAMMING CORRELATION
LengthAlphabet size $H_{max}$ over correlation window of length LNumber of sequencesConstraintsSource
$\frac{q^m-1}{d}$ $q^{m-1}$ $\left\lceil \frac{L(q-1)}{q^m-1}\right\rceil$ $d$ $d|(q-1)$, gcd$(d, m)=1$[32]
$ev$ $v$ $\left\lceil \frac{L}{v}\right\rceil$ $f$[4]
$ p(p^m-1)$ $p^{m}$ $\left\lceil\frac{L}{p^{m}-1}\right\rceil$ $p^{m-1}$ $m\geq 2$[5]
$evw$ $(v-1)w+\frac{ew}{r}$ $\left\lceil \frac{L}{vw}\right\rceil$ $f$ $q_1\geq p_1>2e$, $r|e$ $v\geq \frac{p_1e}{r}$ and $gcd(w, e)=1$[1]
$v\frac{q^m-1}{d}$ $vq^{m-1} $ $\left\lceil \frac{(q-1)L}{v(q^{m}-1)}\right\rceil$ $d$ $m>1, $ $q^m \leq p_1$ and $gcd(d, m)=1, $ $d|q-1$, $\frac{q^m-1}{d}|p_i-1$ for $1\leq i \leq s$[1]
$q$ is a prime power and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\cdots <p_s$;
$e, f$ are integers such that $e>1$ and $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\cdots <q_t$;
$r$ is an integer such that $r>1$ and $r|gcd(q_1-1, q_2-1, \ldots, q_t-1)$;
$d, m$ are positive integers.
LengthAlphabet size $H_{max}$ over correlation window of length LNumber of sequencesConstraintsSource
$\frac{q^m-1}{d}$ $q^{m-1}$ $\left\lceil \frac{L(q-1)}{q^m-1}\right\rceil$ $d$ $d|(q-1)$, gcd$(d, m)=1$[32]
$ev$ $v$ $\left\lceil \frac{L}{v}\right\rceil$ $f$[4]
$ p(p^m-1)$ $p^{m}$ $\left\lceil\frac{L}{p^{m}-1}\right\rceil$ $p^{m-1}$ $m\geq 2$[5]
$evw$ $(v-1)w+\frac{ew}{r}$ $\left\lceil \frac{L}{vw}\right\rceil$ $f$ $q_1\geq p_1>2e$, $r|e$ $v\geq \frac{p_1e}{r}$ and $gcd(w, e)=1$[1]
$v\frac{q^m-1}{d}$ $vq^{m-1} $ $\left\lceil \frac{(q-1)L}{v(q^{m}-1)}\right\rceil$ $d$ $m>1, $ $q^m \leq p_1$ and $gcd(d, m)=1, $ $d|q-1$, $\frac{q^m-1}{d}|p_i-1$ for $1\leq i \leq s$[1]
$q$ is a prime power and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\cdots <p_s$;
$e, f$ are integers such that $e>1$ and $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\cdots <q_t$;
$r$ is an integer such that $r>1$ and $r|gcd(q_1-1, q_2-1, \ldots, q_t-1)$;
$d, m$ are positive integers.
Table Ⅲ.  NEW FHS SETS WITH OPTIMAL PARTIAL HAMMING CORRELATION
LengthAlphabet size $H_{max}$Number of sequencesConstraintsReference
$\frac{w(q^m-1)}{d}$ $(q^{m-1}-1+\frac{q-1}{d})w$ $\frac{q-1}{d}$ $d$ $m\geq 3$, $d|q-1$, gcd$(m, d)=1$, $q_1>q, $Corollary 6
$wp(p^m-1)$ $p^{m}w$ $p$ $p^{m-1}$ $m>1, \ $ and $q_1>p^m, $Corollary 7
$ewv$ $(v-1+e)w$ $e$ $f$ $q_1>p_1-1$, If $v$ is not a prime with $f>1$ or $v$ is a prime with $f\geq e$, Corollary 8
$pv(p^m-1)$ $vp^m$ $p$ $f_1$ $p|p_i-1$, $f_1=\frac{p_1-1}{p}\geq 2$, $p^m >p_1-1$, $p^m>2(1+p)$Corollary 9
$(q'-1)\frac{q^m-1}{d}$ $(q^{m-1}-1+\frac{q-1}{d})q'$ $\frac{q-1}{d}$ $d$ $d|q-1$, gcd$(m, d)=1$, $d\geq 2$ $gcd(q'-1, \frac{q-1}{d})=1$, $q'>q+1$Corollary 10
$(q-1)p(p^m-1)$ $p^{m}q$ $p$ $p^{m-1}$ $p^{m}-3p\geq 1$, $q\geq p^m$, $gcd(q-1, p)=1$, $m>1$Corollary 11
$ev(q-1)$ $(v-1+e)q$ $e$ $f$ $q> p_1-1$, $v\geq e^3f^2$, $q\geq 2e+5$, $gcd(q-1, e)=1$, $f>1$Corollary 12
$q, q'$ are prime powers and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\ldots<p_s$;
$e$ is an integer such that $e| gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is any an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$d, m$ are positive integers.
LengthAlphabet size $H_{max}$Number of sequencesConstraintsReference
$\frac{w(q^m-1)}{d}$ $(q^{m-1}-1+\frac{q-1}{d})w$ $\frac{q-1}{d}$ $d$ $m\geq 3$, $d|q-1$, gcd$(m, d)=1$, $q_1>q, $Corollary 6
$wp(p^m-1)$ $p^{m}w$ $p$ $p^{m-1}$ $m>1, \ $ and $q_1>p^m, $Corollary 7
$ewv$ $(v-1+e)w$ $e$ $f$ $q_1>p_1-1$, If $v$ is not a prime with $f>1$ or $v$ is a prime with $f\geq e$, Corollary 8
$pv(p^m-1)$ $vp^m$ $p$ $f_1$ $p|p_i-1$, $f_1=\frac{p_1-1}{p}\geq 2$, $p^m >p_1-1$, $p^m>2(1+p)$Corollary 9
$(q'-1)\frac{q^m-1}{d}$ $(q^{m-1}-1+\frac{q-1}{d})q'$ $\frac{q-1}{d}$ $d$ $d|q-1$, gcd$(m, d)=1$, $d\geq 2$ $gcd(q'-1, \frac{q-1}{d})=1$, $q'>q+1$Corollary 10
$(q-1)p(p^m-1)$ $p^{m}q$ $p$ $p^{m-1}$ $p^{m}-3p\geq 1$, $q\geq p^m$, $gcd(q-1, p)=1$, $m>1$Corollary 11
$ev(q-1)$ $(v-1+e)q$ $e$ $f$ $q> p_1-1$, $v\geq e^3f^2$, $q\geq 2e+5$, $gcd(q-1, e)=1$, $f>1$Corollary 12
$q, q'$ are prime powers and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\ldots<p_s$;
$e$ is an integer such that $e| gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is any an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$d, m$ are positive integers.
[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[3]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[7]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[11]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[12]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[13]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[14]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[15]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (347)
  • HTML views (371)
  • Cited by (0)

Other articles
by authors

[Back to Top]