Let $q$ be a prime greater than 4. In this paper, we determine the coefficients of the discrete Fourier transform over the finite field $\mathbb {F}_q$ of two classes of quaternary sequences of even length with optimal autocorrelation. They are quaternary sequence with period $2p$ derived from binary Legendre sequences and quaternary sequence with period $2p(p+2)$ derived from twin-prime sequences pair. As applications, the linear complexities over the finite field $\mathbb {F}_q$ of both of the quaternary sequences are determined.
Citation: |
[1] | M. Antweiler and L. Bomer, Complex sequences over ${\rm{G}}F(q)$ with a two-level autocorrelation function and a large linear span, IEEE Transaction on Information Theory, 38 (1992), 120-130. doi: 10.1109/18.108256. |
[2] | D. Calabro and J. K. Wolf, On the synthesis of two-dimensional arrays with desirable correlation properties, Inform. Contro, 11 (1967), 537-560. doi: 10.1016/S0019-9958(67)90755-3. |
[3] | Z. X. Chen and V. Edemskiy, Linear complexity of quaternary sequences over $Z_4$ derived from generalized cyclotomic classes modulo $2p$, International Journal of Netword Security, 19 (2017), 613-620. |
[4] | Z. X. Chen, Linear complexity and trace representation of quaternary sequences over $\mathbb{Z}_4$ based on generalized cyclotomic classes modulo $pq$, Cryptography and Communications-discrete Structures, Boolean Functions and Sequences, 9 (2017), 445-458. doi: 10.1007/s12095-016-0185-6. |
[5] | C. Ding, T. Helleseth and W. Shan, On the linear complexity of Legendre sequences, IEEE Transaction on Information Theory, 44 (1998), 1276-1278. doi: 10.1109/18.669398. |
[6] | C. Ding, Codes from difference sets, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. |
[7] | X. N. Du and Z. X. Chen, Linear complexity of quaternary sequence generated using generalized cyclomic classes modulo $2p$, IEICE Transactions on Fundamentals, 94 (2011), 1214-1217. |
[8] | V. Edemskiy and A. Ivanov, The linear complexity of balanced quaternary sequences with optimal autocorrelation value, Cryptography and Communications, 7 (2015), 485-496. doi: 10.1007/s12095-015-0130-0. |
[9] | S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communivation, in Cryptography and Radar Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511546907. |
[10] | D. H. Green and L. P. Garcia Perera, The linear complexity of related prime sequences, Proc. R. Soc. Lond. A, 460 (2004), 487-498. doi: 10.1098/rspa.2003.1216. |
[11] | A. Johansen, T. Helleseth and X. Tang, The correlation disbution of quaternary sequences of period $2(2^n-1)$, IEEE Transaction on Information Theory, 54 (2008), 3130-3139. doi: 10.1109/TIT.2008.924727. |
[12] | P. H. Ke and S. Y. Zhang, New classes of quaternary cyclotomic sequences of length $2p^m$ with high linear complexity, Information Processing Letters, 112 (2012), 646-650. doi: 10.1016/j.ipl.2012.05.011. |
[13] | Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New quaternary sequences with ideal autocorrelation constructed from legendre sequences, IEICE Transactions on Fundamentals, E96-A (2013), 1872-1882. |
[14] | Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New quaternary sequences with optimal autocorrelation, IEEE International Symposium on Information Theory, (2009), 286-289. |
[15] | A. Klapper, The vulnerability of geometric sequences based on fields of odd characteristic, Journal of Cryptology, 7 (1994), 33-51. doi: 10.1007/BF00195208. |
[16] | R. Marzouk and A. Winterhof, On the pseudorandomness of binary and quaternary sequences linked by the Gray mapping, Periodica Mathematica Hungarica, 60 (2010), 1-11. doi: 10.1007/s10998-010-1013-y. |
[17] | J. L. Masseey, Shift register synthesis and BCH decoding, IEEE Transaction on Information Theory, 15 (1969), 122-127. |
[18] | A. J. Menezes, P. C. Oorscgot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1997. |
[19] | R. A. Rueppe, The Science of Information Integrity, in Stream ciphers, In: Simmons G. J. (ed.) Contemporary Cryptology, IEEE Press, New York, (1992), 65–134. |
[20] | M. Su and A. Winterhof, On the pseudorandomness of quaternary sequences derived from sequences over $F_4$, Periodica Mathematica Hungarica, 74 (2017), 79-87. doi: 10.1007/s10998-016-0143-2. |
[21] | W. Su, Y. Yang, Z. C. Zhou and X. H. Tang, New quaternary sequence of even length with optimal autocorrelation, Science China in Information Sciences, 61 (2018), 022308, 13pp. doi: 10.1007/s11432-016-9087-2. |
[22] | X. H. Tang and C. Ding, New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value, IEEE Transaction on Information Theory, 56 (2010), 6398-6405. doi: 10.1109/TIT.2010.2081170. |
[23] | X. H. Tang and J. Linder, Almost quaternary sequences with ideal autocorrelation property, IEEE Signal Process Letters, 16 (2009), 38-40. |
[24] | X. Tang and P. Udaya, A note on the optimal quadriphase sequences families, IEEE Transaction on Information Theory, 53 (2007), 433-436. doi: 10.1109/TIT.2006.887502. |
[25] | R. J. Turyn, The linear complexity of the Legendre sequence, J. Soc. Ind. Appl. Math., 12 (1964), 115-116. doi: 10.1137/0112010. |
[26] | P. Udaya and M. U. Siddiqi, Generalized GMW quadriphase sequences satisfying the Welch bound with equality, Applicable Algebra in Engineering, Communication and Computing, 10 (2000), 203-225. doi: 10.1007/s002000050125. |
[27] | Q. Wang, Y. Jiang and D. Lin, Linear complexity of binary generalized cyclotomic sequences over ${\rm{G}}F(q)$, Journal of Complexity, 31 (2015), 731-740. doi: 10.1016/j.jco.2015.01.001. |
[28] | Y. Yang and X. H. Tang, Balanced quaternary sequences pairs of odd period with(almost) optimal autocorrelation and cross-correlation, IEEE Communications Letters, 18 (2014), 1327-1330. doi: 10.1109/LCOMM.2014.2328603. |
[29] | Z. Yang and P. H. Ke, Construction of quaternary sequences of length $p$ with low autocorrelation, Cryptography and Communications-discrete Structures, Boolean Functions and Sequences, 3 (2011), 55-64. doi: 10.1007/s12095-010-0034-y. |