November  2018, 12(4): 641-657. doi: 10.3934/amc.2018038

$ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes

1. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

2. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China

3. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Jian Gao

Received  April 2016 Published  September 2018

Fund Project: This research is supported by the National Natural Science Foundation of China (Grant Nos. 11701336, 11626144, 11671235, 61571243 and 61171082), the Scientific Research Foundation of Civil Aviation University of China (Grant No. 2017QD22X).

This paper is concerned with ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. These codes can be identified as submodules of the ring ${\mathbb{Z}}_{2}[x]/\langle x^r-1\rangle × {\mathbb{Z}}_{2}[x]/\langle x^s-1\rangle × {\mathbb{Z}}_{4}[x]/\langle x^t-1\rangle$. There are two major ingredients. First, we determine the generator polynomials and minimum generating sets of this kind of codes. Furthermore, we investigate their dual codes. We determine the structure of the dual of separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes completely. For the dual of non-separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes, we give their structural properties in a few special cases.

Citation: Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038
References:
[1]

T. AbualrubI. Siap and N. Aydin, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.  Google Scholar

[2]

I. AydogduT. Abualrub and I. Siap, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.  Google Scholar

[3]

I. Aydogdu and I. Siap, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015), 2089-2102.  doi: 10.1080/03081087.2014.952728.  Google Scholar

[4]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009), 167-179.  doi: 10.1007/s10623-009-9316-9.  Google Scholar

[5]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018), 463-479.  doi: 10.1007/s10623-017-0334-8.  Google Scholar

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl., 10 (1973), vi+97 pp.  Google Scholar

[7]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59.  doi: 10.1007/s10623-009-9340-9.  Google Scholar

[8]

J. GaoM. ShiT. Wu and F.-W. Fu, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016), 233-250.  doi: 10.1016/j.ffa.2016.02.003.  Google Scholar

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.  Google Scholar

[10]

H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.  Google Scholar

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013), 247-255.   Google Scholar

[12]

M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.  Google Scholar

[13]

M. ShiL. QianS. LinN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[14]

Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997. doi: 10.1142/3603.  Google Scholar

show all references

References:
[1]

T. AbualrubI. Siap and N. Aydin, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.  Google Scholar

[2]

I. AydogduT. Abualrub and I. Siap, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.  Google Scholar

[3]

I. Aydogdu and I. Siap, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015), 2089-2102.  doi: 10.1080/03081087.2014.952728.  Google Scholar

[4]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009), 167-179.  doi: 10.1007/s10623-009-9316-9.  Google Scholar

[5]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018), 463-479.  doi: 10.1007/s10623-017-0334-8.  Google Scholar

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl., 10 (1973), vi+97 pp.  Google Scholar

[7]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59.  doi: 10.1007/s10623-009-9340-9.  Google Scholar

[8]

J. GaoM. ShiT. Wu and F.-W. Fu, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016), 233-250.  doi: 10.1016/j.ffa.2016.02.003.  Google Scholar

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.  Google Scholar

[10]

H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.  Google Scholar

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013), 247-255.   Google Scholar

[12]

M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.  Google Scholar

[13]

M. ShiL. QianS. LinN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[14]

Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997. doi: 10.1142/3603.  Google Scholar

[1]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[2]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[3]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[5]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[6]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[7]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[11]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[12]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[13]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[14]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[15]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[16]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

[17]

Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020358

[18]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[19]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (259)
  • HTML views (398)
  • Cited by (1)

Other articles
by authors

[Back to Top]