This paper is concerned with ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. These codes can be identified as submodules of the ring ${\mathbb{Z}}_{2}[x]/\langle x^r-1\rangle × {\mathbb{Z}}_{2}[x]/\langle x^s-1\rangle × {\mathbb{Z}}_{4}[x]/\langle x^t-1\rangle$. There are two major ingredients. First, we determine the generator polynomials and minimum generating sets of this kind of codes. Furthermore, we investigate their dual codes. We determine the structure of the dual of separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes completely. For the dual of non-separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes, we give their structural properties in a few special cases.
Citation: |
T. Abualrub
, I. Siap
and N. Aydin
, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014)
, 1508-1514.
doi: 10.1109/TIT.2014.2299791.![]() ![]() ![]() |
|
I. Aydogdu
, T. Abualrub
and I. Siap
, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015)
, 1806-1814.
doi: 10.1080/00207160.2013.859854.![]() ![]() ![]() |
|
I. Aydogdu
and I. Siap
, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015)
, 2089-2102.
doi: 10.1080/03081087.2014.952728.![]() ![]() ![]() |
|
J. Borges
, C. Fernández-Córdoba
, J. Pujol
and J. Rifà
, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009)
, 167-179.
doi: 10.1007/s10623-009-9316-9.![]() ![]() ![]() |
|
J. Borges
, C. Fernández-Córdoba
and R. Ten-Valls
, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018)
, 463-479.
doi: 10.1007/s10623-017-0334-8.![]() ![]() ![]() |
|
P. Delsarte, An algebraic approach to the association schemes of coding theory,
Philips Res. Reports Suppl., 10 (1973), vi+97 pp.
![]() ![]() |
|
C. Fernández-Córdoba
, J. Pujol
and M. Villanueva
, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010)
, 43-59.
doi: 10.1007/s10623-009-9340-9.![]() ![]() ![]() |
|
J. Gao
, M. Shi
, T. Wu
and F.-W. Fu
, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016)
, 233-250.
doi: 10.1016/j.ffa.2016.02.003.![]() ![]() ![]() |
|
W. C. Huffman and V. Pless,
Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
|
H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.
![]() ![]() |
|
M. Shi
, P. Solé
and B. Wu
, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013)
, 247-255.
![]() ![]() |
|
M. Shi
and Y. Zhang
, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016)
, 159-178.
doi: 10.1016/j.ffa.2016.01.010.![]() ![]() ![]() |
|
M. Shi
, L. Qian
, S. Lin
, N. Aydin
and P. Solé
, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017)
, 86-95.
doi: 10.1016/j.ffa.2016.11.016.![]() ![]() ![]() |
|
Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997.
doi: 10.1142/3603.![]() ![]() |