An $(n,N,k,m)$-combinatorial batch code (CBC) was defined by Paterson, Stinson and Wei as a purely combinatorial version of batch codes which were first proposed by Ishai, Kushilevitz, Ostrovsky and Sahai. It is a system consisting of $m$ subsets of an $n$-element set such that any $k$ distinct elements can be retrieved by reading at most one (or in general, $t$) elements from each subset and the number of total elements in $m$ subsets is $N$. For given parameters $n,k,m$, the goal is to determine the minimum $N$, denoted by $N(n,k,m)$.
So far, for $k≥5$, $m+3≤ n< \binom{m}{k-2}$, precise values of $N(n,k,m)$ have not been established except for some special parameters. In this paper, we present a lower bound on $N(n,k,k+1)$, which is tight for some $n$ and $k$. Based on this lower bound, the monotonicity of optimal values of CBC and several constructions, we obtain $N(m+4,5,m)$, $N(m+4,6,m)$ and $N(m+3,7,m)$ in different ways.
Citation: |
[1] |
S. Bhattacharya, S. Ruj and B. Roy, Combinatorial batch codes: A lower bound and optimal constructions, Adv. Math. Commun., 6 (2012), 165-174.
doi: 10.3934/amc.2012.6.165.![]() ![]() ![]() |
[2] |
R. A. Brualdi, K. P. Kiernan, S. A. Meyer and M. W. Schroeder, Combinatorial batch codes and transversal matroids, Adv. Math. Commun., 4 (2010), 419-431.
doi: 10.3934/amc.2010.4.419.![]() ![]() ![]() |
[3] |
R. A. Brualdi, K. P. Kiernan, S. A. Meyer and M. W. Schroeder, Erratum to " combinatorial batch codes and transversal matroids", Adv. Math. Commun., 4 (2010), 597.
doi: 10.3934/amc.2010.4.597.![]() ![]() ![]() |
[4] |
C. Bujtás and Z. Tuza, Optimal batch codes: Many items or low retrieval requirement, Adv. Math. Commun., 5 (2011), 529-541.
doi: 10.3934/amc.2011.5.529.![]() ![]() ![]() |
[5] |
C. Bujtás and Z. Tuza, Optimal combinatorial batch codes derived from dual systems, Miskolc Math. Notes, 12 (2011), 11-23.
doi: 10.18514/MMN.2011.325.![]() ![]() ![]() |
[6] |
J. Chen, S. Zhang and G. Zhang, Optimal combinatorial batch code: Monotonicity, lower and upper bounds, Sci. Sin. Math., 45 (2015), 311–320 (in Chinese).
doi: 10.1360/N012014-00061.![]() ![]() |
[7] |
Y. Ishai, E. Kushilevitz, R. Ostrovsky and A. Sahai, Batch codes and their applications, in Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing STOC' 04, New York, USA, 36 (2004), 262–271.
doi: 10.1145/1007352.1007396.![]() ![]() ![]() |
[8] |
D. Jia, G. Zhang and L. Yuan, A class of optimal combinatorial batch code, Acta Math. Sinica (Chin. Ser.), 59 (2016), 267–278.(in Chinese)
![]() ![]() |
[9] |
M. B. Paterson, D. R. Stinson and R. Wei, Combinatorial batch codes, Adv. Math. Commun., 3 (2009), 13-27.
doi: 10.3934/amc.2009.3.13.![]() ![]() ![]() |
[10] |
S. Ruj and B. Roy, More on combinatorial batch codes, preprint arXiv: 0809.3357v1.
![]() |
[11] |
N. Silberstein and A. Gál, Optimal combinatorial batch codes based on block designs, Des. Codes Cryptogr., 78 (2016), 409-424.
doi: 10.1007/s10623-014-0007-9.![]() ![]() ![]() |