November  2018, 12(4): 707-721. doi: 10.3934/amc.2018042

Self-duality of generalized twisted Gabidulin codes

1. 

Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

2. 

Otto-von-Guericke-Universität, Magdeburg, Germany & Universidad del Norte, Barranquilla, Colombia

* Corresponding author: Ferruh Özbudak

The current affilitaion is: TÜBİTAK BİLGEM UEKAE, 41470, Gebze/Kocaeli, Turkey

Received  June 2017 Revised  February 2018 Published  September 2018

Self-duality of Gabidulin codes was investigated in [10] and the authors provided an if and only if condition for a Gabidulin code to be equivalent to a self-dual maximum rank distance (MRD) code. In this paper, we investigate the analog problem for generalized twisted Gabidulin codes (a larger family of linear MRD codes including the family of Gabidulin codes). We observe that the condition presented in [10] still holds for generalized Gabidulin codes (an intermediate family between Gabidulin codes and generalized twisted Gabidulin codes). However, beyond the family of generalized Gabidulin codes we observe that some additional conditions are required depending on the additional parameters. Our tools are similar to those in [10] but we also use linearized polynomials, which leads to further tools and direct proofs.

Citation: Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042
References:
[1]

L. Carlitz, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963), 121-125.   Google Scholar

[2]

A. CossidenteG. Marino and F. Pavese, Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016), 597-609.  doi: 10.1007/s10623-015-0108-0.  Google Scholar

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[4]

L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65-120.  doi: 10.2307/1967217.  Google Scholar

[5]

N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp.  Google Scholar

[6]

E. M. Gabidulin, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985), 1-12.   Google Scholar

[7]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108. Google Scholar

[8]

R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9781139172769.  Google Scholar

[9]

G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2. Google Scholar

[10]

G. Nebe and W. Willems, On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016), 633-642.  doi: 10.3934/amc.2016031.  Google Scholar

[11]

K. Otal and F. Özbudak, Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016), 589-600.  doi: 10.3934/amc.2016028.  Google Scholar

[12]

K. Otal and F. Özbudak, Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017), 164-168.  doi: 10.1109/TIT.2016.2622277.  Google Scholar

[13]

K. Otal and F. Özbudak, Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018), 293-303.  doi: 10.1016/j.ffa.2017.12.003.  Google Scholar

[14]

A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[15]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[16]

Z.-X. Wan, Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996. doi: 10.1142/9789812830234.  Google Scholar

[17]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

show all references

References:
[1]

L. Carlitz, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963), 121-125.   Google Scholar

[2]

A. CossidenteG. Marino and F. Pavese, Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016), 597-609.  doi: 10.1007/s10623-015-0108-0.  Google Scholar

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[4]

L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65-120.  doi: 10.2307/1967217.  Google Scholar

[5]

N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp.  Google Scholar

[6]

E. M. Gabidulin, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985), 1-12.   Google Scholar

[7]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108. Google Scholar

[8]

R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9781139172769.  Google Scholar

[9]

G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2. Google Scholar

[10]

G. Nebe and W. Willems, On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016), 633-642.  doi: 10.3934/amc.2016031.  Google Scholar

[11]

K. Otal and F. Özbudak, Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016), 589-600.  doi: 10.3934/amc.2016028.  Google Scholar

[12]

K. Otal and F. Özbudak, Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017), 164-168.  doi: 10.1109/TIT.2016.2622277.  Google Scholar

[13]

K. Otal and F. Özbudak, Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018), 293-303.  doi: 10.1016/j.ffa.2017.12.003.  Google Scholar

[14]

A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[15]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[16]

Z.-X. Wan, Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996. doi: 10.1142/9789812830234.  Google Scholar

[17]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[4]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[8]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (270)
  • HTML views (301)
  • Cited by (0)

Other articles
by authors

[Back to Top]