-
Previous Article
A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation
- AMC Home
- This Issue
-
Next Article
Bent and vectorial bent functions, partial difference sets, and strongly regular graphs
Self-duality of generalized twisted Gabidulin codes
1. | Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey |
2. | Otto-von-Guericke-Universität, Magdeburg, Germany & Universidad del Norte, Barranquilla, Colombia |
Self-duality of Gabidulin codes was investigated in [
References:
[1] |
L. Carlitz, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963), 121-125. Google Scholar |
[2] |
A. Cossidente, G. Marino and F. Pavese,
Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016), 597-609.
doi: 10.1007/s10623-015-0108-0. |
[3] |
P. Delsarte,
Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[4] |
L. E. Dickson,
The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65-120.
doi: 10.2307/1967217. |
[5] |
N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp. |
[6] |
E. M. Gabidulin, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985), 1-12. Google Scholar |
[7] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108. Google Scholar |
[8] |
R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9781139172769. |
[9] |
G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2. Google Scholar |
[10] |
G. Nebe and W. Willems,
On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016), 633-642.
doi: 10.3934/amc.2016031. |
[11] |
K. Otal and F. Özbudak,
Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016), 589-600.
doi: 10.3934/amc.2016028. |
[12] |
K. Otal and F. Özbudak,
Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017), 164-168.
doi: 10.1109/TIT.2016.2622277. |
[13] |
K. Otal and F. Özbudak,
Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018), 293-303.
doi: 10.1016/j.ffa.2017.12.003. |
[14] |
A. Ravagnani,
Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.
doi: 10.1007/s10623-015-0077-3. |
[15] |
J. Sheekey,
A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016), 475-488.
doi: 10.3934/amc.2016019. |
[16] |
Z.-X. Wan,
Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996.
doi: 10.1142/9789812830234. |
[17] |
B. Wu and Z. Liu,
Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003. |
show all references
References:
[1] |
L. Carlitz, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963), 121-125. Google Scholar |
[2] |
A. Cossidente, G. Marino and F. Pavese,
Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016), 597-609.
doi: 10.1007/s10623-015-0108-0. |
[3] |
P. Delsarte,
Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[4] |
L. E. Dickson,
The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65-120.
doi: 10.2307/1967217. |
[5] |
N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp. |
[6] |
E. M. Gabidulin, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985), 1-12. Google Scholar |
[7] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108. Google Scholar |
[8] |
R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9781139172769. |
[9] |
G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2. Google Scholar |
[10] |
G. Nebe and W. Willems,
On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016), 633-642.
doi: 10.3934/amc.2016031. |
[11] |
K. Otal and F. Özbudak,
Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016), 589-600.
doi: 10.3934/amc.2016028. |
[12] |
K. Otal and F. Özbudak,
Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017), 164-168.
doi: 10.1109/TIT.2016.2622277. |
[13] |
K. Otal and F. Özbudak,
Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018), 293-303.
doi: 10.1016/j.ffa.2017.12.003. |
[14] |
A. Ravagnani,
Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.
doi: 10.1007/s10623-015-0077-3. |
[15] |
J. Sheekey,
A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016), 475-488.
doi: 10.3934/amc.2016019. |
[16] |
Z.-X. Wan,
Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996.
doi: 10.1142/9789812830234. |
[17] |
B. Wu and Z. Liu,
Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003. |
[1] |
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077 |
[2] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[3] |
Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021007 |
[4] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[5] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[6] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[7] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[8] |
Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021003 |
[9] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[10] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[11] |
Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078 |
[12] |
Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072 |
[13] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003 |
[14] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[15] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[16] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[17] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
[18] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[19] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[20] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021057 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]