November  2018, 12(4): 707-721. doi: 10.3934/amc.2018042

Self-duality of generalized twisted Gabidulin codes

1. 

Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

2. 

Otto-von-Guericke-Universität, Magdeburg, Germany & Universidad del Norte, Barranquilla, Colombia

* Corresponding author: Ferruh Özbudak

The current affilitaion is: TÜBİTAK BİLGEM UEKAE, 41470, Gebze/Kocaeli, Turkey

Received  June 2017 Revised  February 2018 Published  September 2018

Self-duality of Gabidulin codes was investigated in [10] and the authors provided an if and only if condition for a Gabidulin code to be equivalent to a self-dual maximum rank distance (MRD) code. In this paper, we investigate the analog problem for generalized twisted Gabidulin codes (a larger family of linear MRD codes including the family of Gabidulin codes). We observe that the condition presented in [10] still holds for generalized Gabidulin codes (an intermediate family between Gabidulin codes and generalized twisted Gabidulin codes). However, beyond the family of generalized Gabidulin codes we observe that some additional conditions are required depending on the additional parameters. Our tools are similar to those in [10] but we also use linearized polynomials, which leads to further tools and direct proofs.

Citation: Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042
References:
[1]

L. Carlitz, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963), 121-125.   Google Scholar

[2]

A. CossidenteG. Marino and F. Pavese, Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016), 597-609.  doi: 10.1007/s10623-015-0108-0.  Google Scholar

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[4]

L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65-120.  doi: 10.2307/1967217.  Google Scholar

[5]

N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp.  Google Scholar

[6]

E. M. Gabidulin, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985), 1-12.   Google Scholar

[7]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108. Google Scholar

[8]

R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9781139172769.  Google Scholar

[9]

G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2. Google Scholar

[10]

G. Nebe and W. Willems, On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016), 633-642.  doi: 10.3934/amc.2016031.  Google Scholar

[11]

K. Otal and F. Özbudak, Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016), 589-600.  doi: 10.3934/amc.2016028.  Google Scholar

[12]

K. Otal and F. Özbudak, Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017), 164-168.  doi: 10.1109/TIT.2016.2622277.  Google Scholar

[13]

K. Otal and F. Özbudak, Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018), 293-303.  doi: 10.1016/j.ffa.2017.12.003.  Google Scholar

[14]

A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[15]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[16]

Z.-X. Wan, Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996. doi: 10.1142/9789812830234.  Google Scholar

[17]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

show all references

References:
[1]

L. Carlitz, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963), 121-125.   Google Scholar

[2]

A. CossidenteG. Marino and F. Pavese, Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016), 597-609.  doi: 10.1007/s10623-015-0108-0.  Google Scholar

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[4]

L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65-120.  doi: 10.2307/1967217.  Google Scholar

[5]

N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp.  Google Scholar

[6]

E. M. Gabidulin, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985), 1-12.   Google Scholar

[7]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108. Google Scholar

[8]

R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9781139172769.  Google Scholar

[9]

G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2. Google Scholar

[10]

G. Nebe and W. Willems, On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016), 633-642.  doi: 10.3934/amc.2016031.  Google Scholar

[11]

K. Otal and F. Özbudak, Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016), 589-600.  doi: 10.3934/amc.2016028.  Google Scholar

[12]

K. Otal and F. Özbudak, Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017), 164-168.  doi: 10.1109/TIT.2016.2622277.  Google Scholar

[13]

K. Otal and F. Özbudak, Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018), 293-303.  doi: 10.1016/j.ffa.2017.12.003.  Google Scholar

[14]

A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[15]

J. Sheekey, A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016), 475-488.  doi: 10.3934/amc.2016019.  Google Scholar

[16]

Z.-X. Wan, Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996. doi: 10.1142/9789812830234.  Google Scholar

[17]

B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.  doi: 10.1016/j.ffa.2013.03.003.  Google Scholar

[1]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[2]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[3]

Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021007

[4]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[7]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[8]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[9]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[10]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[11]

Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078

[12]

Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072

[13]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[14]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[15]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[16]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[17]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[18]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[19]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[20]

Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021057

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (283)
  • HTML views (303)
  • Cited by (1)

Other articles
by authors

[Back to Top]