We investigate the $ k$-error linear complexity of pseudorandom binary sequences of period $ p^{\mathfrak{r}} $ derived from the Euler quotients modulo $ p^{\mathfrak{r}-1} $, a power of an odd prime $ p $ for $ \mathfrak{r}≥2 $. When $ \mathfrak{r} = 2 $, this is just the case of polynomial quotients (including Fermat quotients) modulo $p $, which has been studied in an earlier work of Chen, Niu and Wu. In this work, we establish a recursive relation on the $ k $-error linear complexity of the sequences for the case of $ \mathfrak{r}≥3 $. We also state the exact values of the $ k $-error linear complexity for the case of $ \mathfrak{r} = 3 $. From the results, we can find that the $ k $-error linear complexity of the sequences (of period $ p^{\mathfrak{r}} $) does not decrease dramatically for $ k<p^{\mathfrak{r}-2}(p-1)^2/2 $.
Citation: |
T. Agoh
, K. Dilcher
and L. Skula
, Fermat quotients for composite moduli, J. Number Theory, 66 (1997)
, 29-50.
doi: 10.1006/jnth.1997.2162.![]() ![]() ![]() |
|
H. Aly
and A. Winterhof
, On the $ k $-error linear complexity over $\mathbb{F}_p $ of Legendre and Sidelnikov sequences, Des. Codes Cryptogr., 40 (2006)
, 369-374.
doi: 10.1007/s10623-006-0023-5.![]() ![]() ![]() |
|
J. Bourgain
, K. Ford
, S. Konyagin
and I. E. Shparlinski
, On the divisibility of Fermat quotients, Michigan Math. J., 59 (2010)
, 313-328.
doi: 10.1307/mmj/1281531459.![]() ![]() ![]() |
|
M. C. Chang
, Short character sums with Fermat quotients, Acta Arith., 152 (2012)
, 23-38.
doi: 10.4064/aa152-1-3.![]() ![]() ![]() |
|
Z. Chen, Trace representation and linear complexity of binary sequences derived from Fermat quotients,
Sci. China Inf. Sci., 57(2014), 112109, 10 pp.
doi: 10.1007/s11432-014-5092-x.![]() ![]() ![]() |
|
Z. Chen
and X. Du
, On the linear complexity of binary threshold sequences derived from Fermat quotients, Des. Codes Cryptogr., 67 (2013)
, 317-323.
doi: 10.1007/s10623-012-9608-3.![]() ![]() ![]() |
|
Z. Chen
, X. Du
and R. Marzouk
, Trace representation of pseudorandom binary sequences derived from Euler quotients, Appl. Algebra Eng. Commun. Comput., 26 (2015)
, 555-570.
doi: 10.1007/s00200-015-0265-4.![]() ![]() ![]() |
|
Z. Chen, Z. Niu and C. Wu, On the $ k$-error linear complexity of binary sequences derived from polynomial quotients,
Sci. China Inf. Sci., 58 (2015), 092107, 15 pp.
doi: 10.1007/s11432-014-5220-7.![]() ![]() ![]() |
|
Z. Chen
and A. Winterhof
, Additive character sums of polynomial quotients, Proceedings of Theory and Applications of Finite Fields-Fq10, Contemp. Math., 579 (2012)
, 67-73.
doi: 10.1090/conm/579/11519.![]() ![]() ![]() |
|
Z. Chen
and A. Winterhof
, Interpolation of Fermat quotients, SIAM J. Discr. Math., 28 (2014)
, 1-7.
doi: 10.1137/130907951.![]() ![]() ![]() |
|
Z. Chen, A. Ostafe and A. Winterhof, Structure of pseudorandom numbers derived from Fermat quotients, in Proceedings of the 3rd International Conference on Arithmetic of Finite Fields-WAIFI2010, Lecture Notes in Comput. Sci., 6087 (2010), 73-5.
doi: 10.1007/978-3-642-13797-6_6.![]() ![]() ![]() |
|
T. W. Cusick, C. Ding and A. Renvall,
Stream Ciphers and Number Theory, North-Holland Mathematical Library, 55. North-Holland Publishing Co., Amsterdam, 1998.
![]() ![]() |
|
C. Ding, G. Xiao and W. Shan,
The Stability Theory of Stream Ciphers, Lecture Notes in Comput. Sci., 561, Springer-Verlag, Berlin, 1991.
doi: 10.1007/3-540-54973-0.![]() ![]() ![]() |
|
X. Du
, Z. Chen
and L. Hu
, Linear complexity of binary sequences derived from Euler quotients with prime-power modulus, Inform. Process. Lett., 112 (2012)
, 604-609.
doi: 10.1016/j.ipl.2012.04.011.![]() ![]() ![]() |
|
V. Edemskiy, C. Li, X. Zeng and T. Helleseth, The linear complexity of generalized cyclotomic binary sequences of period pn, Des. Codes Cryptogr., (2018) to appear. https://doi.org/10.1007/s10623-018-0513-2.
![]() |
|
D. Gómez-Pérez
and A. Winterhof
, Multiplicative character sums of Fermat quotients and pseudorandom sequences, Period. Math. Hungar., 64 (2012)
, 161-168.
doi: 10.1007/s10998-012-3747-1.![]() ![]() ![]() |
|
Z. Niu, Z. Chen and X. Du, Linear complexity problems of level sequences of Euler quotients and their related binary sequences,
Sci. China Inf. Sci., 59 (2016), 32106.
doi: 10.1007/s11432-015-5305-y.![]() ![]() |
|
A. Ostafe
and I. E. Shparlinski
, Pseudorandomness and dynamics of Fermat quotients, SIAM J. Discr. Math., 25 (2011)
, 50-71.
doi: 10.1137/100798466.![]() ![]() ![]() |
|
M. Sha
, The arithmetic of Carmichael quotients, Period. Math. Hungar., 71 (2015)
, 11-23.
doi: 10.1007/s10998-014-0079-3.![]() ![]() ![]() |
|
I. E. Shparlinski
, Character sums with Fermat quotients, Quart. J. Math., 62 (2011)
, 1031-1043.
doi: 10.1093/qmath/haq028.![]() ![]() ![]() |
|
I. E. Shparlinski
, Bounds of multiplicative character sums with Fermat quotients of primes, Bull. Aust. Math. Soc., 83 (2011)
, 456-462.
doi: 10.1017/S000497271000198X.![]() ![]() ![]() |
|
I. E. Shparlinski
, On the value set of Fermat quotients, Proc. Amer. Math. Soc., 140 (2012)
, 1199-1206.
doi: 10.1090/S0002-9939-2011-11203-6.![]() ![]() ![]() |
|
I. E. Shparlinski
, Fermat quotients: Exponential sums, value set and primitive roots, Bull. Lond. Math. Soc., 43 (2011)
, 1228-1238.
doi: 10.1112/blms/bdr058.![]() ![]() ![]() |
|
I. E. Shparlinski
and A. Winterhof
, Distribution of values of polynomial Fermat quotients, Finite Fields Appl., 19 (2013)
, 93-104.
doi: 10.1016/j.ffa.2012.10.004.![]() ![]() ![]() |
|
M. Stamp
and C. F. Martin
, An algorithm for the $k $-error linear complexity of binary sequences with period $2^n $, IEEE Trans. Inf. Theory, 39 (1993)
, 1398-1401.
doi: 10.1109/18.243455.![]() ![]() ![]() |
|
C. Wu, C. Xu, Z. Chen and P. Ke, On error linear complexity of new generalized cyclotomic binary sequences of period $ p^2 $, CoRR abs/1711.06063v3 (2017)
![]() |
|
Z. Xiao
, X. Zeng
, C. Li
and T. Helleseth
, New generalized cyclotomic binary sequences of period $p^2 $, Des. Codes Cryptogr., 86 (2018)
, 1483-1497.
doi: 10.1007/s10623-017-0408-7.![]() ![]() ![]() |
|
Z. Ye, P. Ke and C. Wu, A further study on the linear complexity of new binary cyclotomic sequence of length $ p^r $, CoRR abs/1712.08886 (2017)
![]() |