The first construction of strongly secure quantum ramp secret sharing by Zhang and Matsumoto had an undesirable feature that the dimension of quantum shares must be larger than the number of shares. By using algebraic curves over finite fields, we propose a new construction in which the number of shares can become arbitrarily large for fixed dimension of shares.
Citation: |
[1] |
G. R. Blakley and C. Meadows, Security of ramp schemes, in Advances in Cryptology-CRYPTO'84, vol. 196 of Lecture Notes in Computer Science, Springer-Verlag, 1985, 242-269.
doi: 10.1007/3-540-39568-7_20.![]() ![]() ![]() |
[2] |
A. Bogdanov, S. Guo and I. Komargodski, Threshold secret sharing requires a linear size alphabet, in Theory of Cryptography (eds. M. Hirt and A. Smith), Springer Berlin Heidelberg,
Berlin, Heidelberg, 9986 (2016), 471-484.
doi: 10.1007/978-3-662-53644-5_18.![]() ![]() ![]() |
[3] |
I. Cascudo, R. Cramer and C. Xing, Bounds on the threshold gap in secret sharing and its applications, IEEE Trans. Inform. Theory, 59 (2013), 5600-5612.
doi: 10.1109/TIT.2013.2264504.![]() ![]() |
[4] |
I. Cascudo, J. Skovsted Gundersen and D. Ruano, Improved bounds on the threashold gap in ramp secret sharing, 2018, Cryptology ePrint Archive 2018/099.
![]() |
[5] |
H. Chen and R. Cramer, Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields, in Advances in Cryptology - CRYPT 2006 (ed. C. Dwork),
vol. 4117 of Lecture Notes in Computer Science, Springer-Verlag, 2006, 521-536.
doi: 10.1007/11818175_31.![]() ![]() ![]() |
[6] |
H. Chen, R. Cramer, R. de Haan and I. Cascudo Pueyo, Strongly multiplicative ramp schemes
from high degree rational points on curves, in Advances in Cryptology - EUROCRYPT 2008 (ed. N. Smart), vol. 4965 of Lecture Notes in Computer Science, Springer-Verlag, 2008, 451-470
doi: 10.1007/978-3-540-78967-3_26.![]() ![]() ![]() |
[7] |
R. Cleve, D. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett., 83 (1999), 648-651.
doi: 10.1103/PhysRevLett.83.648.![]() ![]() |
[8] |
D. Gottesman, Theory of quantum secret sharing, Phys. Rev. A, 61 (2000), 042311.
doi: 10.1103/PhysRevA.61.042311.![]() ![]() |
[9] |
M. Iwamoto and H. Yamamoto, Strongly secure ramp secret sharing schemes for general
access structures, Inform. Process. Lett., 97 (2006), 52-57.
doi: 10.1016/j.ipl.2005.09.012.![]() ![]() ![]() |
[10] |
R. Matsumoto, Coding theoretic construction of quantum ramp secret sharing, IEICE Trans. Fundamentals, E101-A (2018), 1215-1222.
doi: 10.1587/transfun.E101.A.1215.![]() ![]() |
[11] |
R. Matsumoto, Strong security of the strongly multiplicative ramp secret sharing based on
algebraic curves, IEICE Trans. Fundamentals, E98-A (2015), 1576-1578.
doi: 10.1587/transfun.E98.A.1576.![]() ![]() |
[12] |
R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.
doi: 10.1145/358746.358762.![]() ![]() ![]() |
[13] |
T. Ogawa, A. Sasaki, M. Iwamoto and H Yamamoto, Quantum secret sharing schemes and reversibility of quantum operations, Phys. Rev. A, 72 (2005), 032318.
doi: 10.1103/PhysRevA.72.032318.![]() ![]() |
[14] |
A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612-613.
doi: 10.1145/359168.359176.![]() ![]() ![]() |
[15] |
A. D. Smith, Quantum secret sharing for general access structures, 2000, arXiv:quant-ph/0001087,
![]() |
[16] |
H. Stichtenoth,
Algebraic Function Fields and Codes, vol. 254 of Graduate Texts in Mathematics, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2009.
![]() ![]() |
[17] |
D. R. Stinson, Cryptography Theory and Practice, 3rd edition, Chapman & Hall/CRC, 2006.
![]() ![]() |
[18] |
H. Yamamoto, Secret sharing system using (k; l; n) threshold scheme, Electronics and Communications in Japan (Part I: Communications), 69 (1986), 46-54, (the original Japanese
version published in 1985)
doi: 10.1002/ecja.4410690906.![]() ![]() ![]() |
[19] |
P. Zhang and R. Matsumoto, Quantum strongly secure ramp secret sharing, Quantum Information Processing, 14 (2015), 715-729.
doi: 10.1007/s11128-014-0863-2.![]() ![]() ![]() |