
-
Previous Article
Optimal information ratio of secret sharing schemes on Dutch windmill graphs
- AMC Home
- This Issue
-
Next Article
Connecting Legendre with Kummer and Edwards
Wave-shaped round functions and primitive groups
1. | DISIM, University of L'Aquila, Italy |
2. | Department of Informatics, University of Bergen, Norway |
3. | Department of Mathematics, University of Trento, Italy |
4. | LIRMM of Montpellier, France |
Round functions used as building blocks for iterated block ciphers, both in the case of Substitution-Permutation Networks (SPN) and Feistel Networks (FN), are often obtained as the composition of different layers. The bijectivity of any encryption function is guaranteed by the use of invertible layers or by the Feistel structure. In this work a new family of ciphers, called wave ciphers, is introduced. In wave ciphers, round functions feature wave functions, which are vectorial Boolean functions obtained as the composition of non-invertible layers, where the confusion layer enlarges the message which returns to its original size after the diffusion layer is applied. Efficient decryption is guaranteed by the use of wave functions in FNs. It is shown how to avoid that the group generated by the round functions acts imprimitively, a serious flaw for the cipher. The primitivity is a consequence of a more general result, which reduce the problem of proving that a given FN generates a primitive group to proving that an SPN, directly related to the given FN, generates a primitive group. Finally, a concrete instance of real-world size wave cipher is proposed as an example, and its resistance against differential and linear cryptanalyses is also established.
References:
[1] |
C. Adams, The CAST-128 encryption algorithm, 1997, Available from: http://buildbot.tools.ietf.org/html/rfc2144. |
[2] |
R. J. Anderson, E. Biham and L. R. Knudsen, SERPENT: A new block cipher proposal, Fast Software Encryption, Lecture Notes in Comput. Sci., 1372 (1998), 222-238. |
[3] |
K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima and T. Tokita, Camellia: A 128-bit block cipher suitable for multiple platforms-design and analysis, Selected Areas in Cryptography, Lecture Notes in Comput. Sci., 2012 (2000), 39-56.
doi: 10.1007/3-540-44983-3_4. |
[4] |
R. Aragona, M. Calderini, A. Tortora and M. Tota, Primitivity of PRESENT and other lightweight ciphers, J. Algebra Appl., 17 (2018), 1850115 (16 pages).
doi: 10.1142/S0219498818501153. |
[5] |
R. Aragona, A. Caranti, F. Dalla Volta and M. Sala,
On the group generated by the round functions of translation based ciphers over arbitrary fields, Finite Fields Appl., 25 (2014), 293-305.
doi: 10.1016/j.ffa.2013.10.005. |
[6] |
R. Aragona, A. Caranti and M. Sala,
The group generated by the round functions of a GOSTlike cipher, Ann. Mat. Pura Appl., 196 (2017), 1-17.
doi: 10.1007/s10231-016-0559-6. |
[7] |
A. Bannier, N. Bodin and E. Filiol, Partition-Based Trapdoor Ciphers, IACR Cryptology ePrint Archive, 2016, Available from: http://eprint.iacr.org/2016/493. |
[8] |
E. Biham and A. Shamir,
Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563. |
[9] |
A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin and C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, CHES '07, Lecture Notes in Comput. Sci., 4727 (2007), 450-466. |
[10] |
K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe,
An APN permutation in dimension six, Finite Fields: theory and applications, 518 (2010), 33-42.
doi: 10.1090/conm/518/10194. |
[11] |
M. Calderini,
A note on some algebraic trapdoors for block ciphers, Adv. Math. Commun., 12 (2018), 515-524.
doi: 10.3934/amc.2018030. |
[12] |
M. Calderini and M. Sala, Elementary abelian regular subgroups as hidden sums for cryptographic trapdoors, preprint, arXiv: 1702.00581. |
[13] |
M. Calderini, I. Villa and M. Sala,
A note on APN permutations in even dimension, Finite Fields Appl., 46 (2017), 1-16.
doi: 10.1016/j.ffa.2017.02.001. |
[14] |
P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511623677. |
[15] |
A. Canteaut, S. Duval and L. Perrin,
A generalisation of Dillon's APN permutation with
the best known differential and nonlinear properties for all fields of size 24k+2, IEEE Trans. Inform. Theory, 63 (2017), 7575-7591.
doi: 10.1109/TIT.2017.2676807. |
[16] |
A. Canteaut and M. Naya-Plasencia, Structural weaknesses of permutations with low differential uniformity and generalized crooked functions, Finite Fields: Theory and Applications Selected Papers from the 9th International Conference Finite Fields and Applications, Contemporary Mathematics, 518 (2010), 55-71.
doi: 10.1090/conm/518/10196. |
[17] |
A. Caranti, F. Dalla Volta and M. Sala,
An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher, Des. Codes Cryptogr., 52 (2009), 293-301.
doi: 10.1007/s10623-009-9283-1. |
[18] |
A. Caranti, F. Dalla Volta and M. Sala,
On some block ciphers and imprimitive groups, Appl. Algebra Engrg. Comm. Comput., 20 (2009), 339-350.
doi: 10.1007/s00200-009-0100-x. |
[19] |
D. Coppersmith and E. Grossman,
Generators for certain alternating groups with applications to cryptography, SIAM J. Appl. Math., 29 (1975), 624-627.
doi: 10.1137/0129051. |
[20] |
J. Daemen and V. Rijmen, The design of Rijndael: AES - the Advanced Encryption Standard, Information Security and Cryptography, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04722-4. |
[21] |
V. Dolmatov, GOST 28147-89: encryption, decryption, and message authentication code (MAC) algorithms, technical report, 2010. Available at http://tools.ietf.org/html/rfc5830. |
[22] |
Federal information processing standards publication, Data Encryption Standard and Others, National Bureau of Standards, US Department of Commerce, 1977. |
[23] |
E. Goursat,
Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup., 6 (1889), 9-102.
doi: 10.24033/asens.317. |
[24] |
X.-D. Hou,
Affinity of permutations of $\mathbb{F}_{2}^{n}$, Discrete Appl. Math., 154 (2006), 313-325.
doi: 10.1016/j.dam.2005.03.022. |
[25] |
Jr. B. S. Kaliski, R. L. Rivest and A. T. Sherman,
Is the Data Encryption Standard a group? (Results of cycling experiments on DES), J. Cryptology, 1 (1988), 3-36.
doi: 10.1007/BF00206323. |
[26] |
M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in cryptology - EUROCRYPT '93, Lecture Notes in Comput. Sci., 765 (1994), 386-397. |
[27] |
K. Nyberg, Differentially uniform mappings for cryptography, Advances in cryptology - EUROCRYPT '93, Lecture Notes in Comput. Sci., 765 (1994), 55-64.
doi: 10.1007/3-540-48285-7_6. |
[28] |
K. G. Paterson, Imprimitive permutation groups and trapdoors in iterated block ciphers, Fast Software Encryption, Lecture Notes in Comput. Sci., 1636 (1999), 201-214. |
[29] |
J. Petrillo,
Goursat's other theorem, The College Mathematics Journal, 40 (2009), 119-124.
|
[30] |
G. Piret, T. Roche and C. Carlet, PICARO-a block cipher allowing efficient higher-order sidechannel resistance, Applied Cryptography and Network Security-ACNS2012, Lecture Notes in Comput. Sci., 7341 (2012), 311-328. |
[31] |
C. E. Shannon,
Communication theory of secrecy systems, Bell System Tech., 28 (1949), 656-715.
doi: 10.1002/j.1538-7305.1949.tb00928.x. |
[32] |
R. Sparr and R. Wernsdorf,
Group theoretic properties of Rijndael-like ciphers, Discrete Appl. Math., 156 (2008), 3139-3149.
doi: 10.1016/j.dam.2007.12.011. |
[33] |
R. Wernsdorf, The round functions of RIJNDAEL generate the alternating group, Fast Software Encryption, Lecture Notes in Comput. Sci., 2365 (2002), 143-148. |
[34] |
R. Wernsdorf, The one-round functions of the DES generate the alternating group, Advances in Cryptology-EUROCRYPT '92, Lecture Notes in Comput. Sci., 658 (1993), 99-112.
doi: 10.1007/3-540-47555-9_9. |
[35] |
R. Wernsdorf, The round functions of SERPENT generate the alternating group, 2000. Available from: http://csrc.nist.gov/archive/aes/round2/comments/20000512-rwernsdorf.pdf. |
show all references
References:
[1] |
C. Adams, The CAST-128 encryption algorithm, 1997, Available from: http://buildbot.tools.ietf.org/html/rfc2144. |
[2] |
R. J. Anderson, E. Biham and L. R. Knudsen, SERPENT: A new block cipher proposal, Fast Software Encryption, Lecture Notes in Comput. Sci., 1372 (1998), 222-238. |
[3] |
K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima and T. Tokita, Camellia: A 128-bit block cipher suitable for multiple platforms-design and analysis, Selected Areas in Cryptography, Lecture Notes in Comput. Sci., 2012 (2000), 39-56.
doi: 10.1007/3-540-44983-3_4. |
[4] |
R. Aragona, M. Calderini, A. Tortora and M. Tota, Primitivity of PRESENT and other lightweight ciphers, J. Algebra Appl., 17 (2018), 1850115 (16 pages).
doi: 10.1142/S0219498818501153. |
[5] |
R. Aragona, A. Caranti, F. Dalla Volta and M. Sala,
On the group generated by the round functions of translation based ciphers over arbitrary fields, Finite Fields Appl., 25 (2014), 293-305.
doi: 10.1016/j.ffa.2013.10.005. |
[6] |
R. Aragona, A. Caranti and M. Sala,
The group generated by the round functions of a GOSTlike cipher, Ann. Mat. Pura Appl., 196 (2017), 1-17.
doi: 10.1007/s10231-016-0559-6. |
[7] |
A. Bannier, N. Bodin and E. Filiol, Partition-Based Trapdoor Ciphers, IACR Cryptology ePrint Archive, 2016, Available from: http://eprint.iacr.org/2016/493. |
[8] |
E. Biham and A. Shamir,
Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563. |
[9] |
A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin and C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, CHES '07, Lecture Notes in Comput. Sci., 4727 (2007), 450-466. |
[10] |
K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe,
An APN permutation in dimension six, Finite Fields: theory and applications, 518 (2010), 33-42.
doi: 10.1090/conm/518/10194. |
[11] |
M. Calderini,
A note on some algebraic trapdoors for block ciphers, Adv. Math. Commun., 12 (2018), 515-524.
doi: 10.3934/amc.2018030. |
[12] |
M. Calderini and M. Sala, Elementary abelian regular subgroups as hidden sums for cryptographic trapdoors, preprint, arXiv: 1702.00581. |
[13] |
M. Calderini, I. Villa and M. Sala,
A note on APN permutations in even dimension, Finite Fields Appl., 46 (2017), 1-16.
doi: 10.1016/j.ffa.2017.02.001. |
[14] |
P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511623677. |
[15] |
A. Canteaut, S. Duval and L. Perrin,
A generalisation of Dillon's APN permutation with
the best known differential and nonlinear properties for all fields of size 24k+2, IEEE Trans. Inform. Theory, 63 (2017), 7575-7591.
doi: 10.1109/TIT.2017.2676807. |
[16] |
A. Canteaut and M. Naya-Plasencia, Structural weaknesses of permutations with low differential uniformity and generalized crooked functions, Finite Fields: Theory and Applications Selected Papers from the 9th International Conference Finite Fields and Applications, Contemporary Mathematics, 518 (2010), 55-71.
doi: 10.1090/conm/518/10196. |
[17] |
A. Caranti, F. Dalla Volta and M. Sala,
An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher, Des. Codes Cryptogr., 52 (2009), 293-301.
doi: 10.1007/s10623-009-9283-1. |
[18] |
A. Caranti, F. Dalla Volta and M. Sala,
On some block ciphers and imprimitive groups, Appl. Algebra Engrg. Comm. Comput., 20 (2009), 339-350.
doi: 10.1007/s00200-009-0100-x. |
[19] |
D. Coppersmith and E. Grossman,
Generators for certain alternating groups with applications to cryptography, SIAM J. Appl. Math., 29 (1975), 624-627.
doi: 10.1137/0129051. |
[20] |
J. Daemen and V. Rijmen, The design of Rijndael: AES - the Advanced Encryption Standard, Information Security and Cryptography, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04722-4. |
[21] |
V. Dolmatov, GOST 28147-89: encryption, decryption, and message authentication code (MAC) algorithms, technical report, 2010. Available at http://tools.ietf.org/html/rfc5830. |
[22] |
Federal information processing standards publication, Data Encryption Standard and Others, National Bureau of Standards, US Department of Commerce, 1977. |
[23] |
E. Goursat,
Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup., 6 (1889), 9-102.
doi: 10.24033/asens.317. |
[24] |
X.-D. Hou,
Affinity of permutations of $\mathbb{F}_{2}^{n}$, Discrete Appl. Math., 154 (2006), 313-325.
doi: 10.1016/j.dam.2005.03.022. |
[25] |
Jr. B. S. Kaliski, R. L. Rivest and A. T. Sherman,
Is the Data Encryption Standard a group? (Results of cycling experiments on DES), J. Cryptology, 1 (1988), 3-36.
doi: 10.1007/BF00206323. |
[26] |
M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in cryptology - EUROCRYPT '93, Lecture Notes in Comput. Sci., 765 (1994), 386-397. |
[27] |
K. Nyberg, Differentially uniform mappings for cryptography, Advances in cryptology - EUROCRYPT '93, Lecture Notes in Comput. Sci., 765 (1994), 55-64.
doi: 10.1007/3-540-48285-7_6. |
[28] |
K. G. Paterson, Imprimitive permutation groups and trapdoors in iterated block ciphers, Fast Software Encryption, Lecture Notes in Comput. Sci., 1636 (1999), 201-214. |
[29] |
J. Petrillo,
Goursat's other theorem, The College Mathematics Journal, 40 (2009), 119-124.
|
[30] |
G. Piret, T. Roche and C. Carlet, PICARO-a block cipher allowing efficient higher-order sidechannel resistance, Applied Cryptography and Network Security-ACNS2012, Lecture Notes in Comput. Sci., 7341 (2012), 311-328. |
[31] |
C. E. Shannon,
Communication theory of secrecy systems, Bell System Tech., 28 (1949), 656-715.
doi: 10.1002/j.1538-7305.1949.tb00928.x. |
[32] |
R. Sparr and R. Wernsdorf,
Group theoretic properties of Rijndael-like ciphers, Discrete Appl. Math., 156 (2008), 3139-3149.
doi: 10.1016/j.dam.2007.12.011. |
[33] |
R. Wernsdorf, The round functions of RIJNDAEL generate the alternating group, Fast Software Encryption, Lecture Notes in Comput. Sci., 2365 (2002), 143-148. |
[34] |
R. Wernsdorf, The one-round functions of the DES generate the alternating group, Advances in Cryptology-EUROCRYPT '92, Lecture Notes in Comput. Sci., 658 (1993), 99-112.
doi: 10.1007/3-540-47555-9_9. |
[35] |
R. Wernsdorf, The round functions of SERPENT generate the alternating group, 2000. Available from: http://csrc.nist.gov/archive/aes/round2/comments/20000512-rwernsdorf.pdf. |






0x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | Ax | Bx | Cx | Dx | Ex | Fx | 10x | 11x | 12x | 13x | 14x | 15x | 16x | 17x | 18x | 19x | 1Ax | 1Bx | 1Cx | 1Dx | 1Ex | 1Fx | |
0x | 16 | |||||||||||||||||||||||||||||||
1x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
2x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
3x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
4x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
5x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
6x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
7x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
8x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
9x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Ax | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Bx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Cx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Dx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Ex | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Fx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
0x | 1x | 2x | 3x | 4x | 5x | 6x | 7x | 8x | 9x | Ax | Bx | Cx | Dx | Ex | Fx | 10x | 11x | 12x | 13x | 14x | 15x | 16x | 17x | 18x | 19x | 1Ax | 1Bx | 1Cx | 1Dx | 1Ex | 1Fx | |
0x | 16 | |||||||||||||||||||||||||||||||
1x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
2x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
3x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
4x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
5x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
6x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
7x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
8x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
9x | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Ax | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Bx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Cx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Dx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Ex | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||||||||||||||||
Fx | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
[1] |
Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715 |
[2] |
Benjamin Hellouin de Menibus, Hugo Maturana Cornejo. Necessary conditions for tiling finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2335-2346. doi: 10.3934/dcds.2020116 |
[3] |
Or Landesberg. Horospherically invariant measures and finitely generated Kleinian groups. Journal of Modern Dynamics, 2021, 17: 337-352. doi: 10.3934/jmd.2021012 |
[4] |
A. Yu. Ol'shanskii and M. V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. Electronic Research Announcements, 2001, 7: 63-71. |
[5] |
Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002 |
[6] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[7] |
Rich Stankewitz, Toshiyuki Sugawa, Hiroki Sumi. Hereditarily non uniformly perfect sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2391-2402. doi: 10.3934/dcdss.2019150 |
[8] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[9] |
Peter Müller, Gábor P. Nagy. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5 (2) : 303-308. doi: 10.3934/amc.2011.5.303 |
[10] |
Mark Comerford, Rich Stankewitz, Hiroki Sumi. Hereditarily non uniformly perfect non-autonomous Julia sets. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 33-46. doi: 10.3934/dcds.2020002 |
[11] |
Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137 |
[12] |
Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012 |
[13] |
Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39. |
[14] |
Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149 |
[15] |
Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007 |
[16] |
Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems and Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465 |
[17] |
Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control and Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467 |
[18] |
Sergei V. Ivanov. On aspherical presentations of groups. Electronic Research Announcements, 1998, 4: 109-114. |
[19] |
Benjamin Weiss. Entropy and actions of sofic groups. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375 |
[20] |
Neal Koblitz, Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications, 2007, 1 (1) : 13-28. doi: 10.3934/amc.2007.1.13 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]