February  2019, 13(1): 89-99. doi: 10.3934/amc.2019005

Optimal information ratio of secret sharing schemes on Dutch windmill graphs

Applied Mathematics and Cryptography Department, Malek Ashtar university of technology, Isfahan, Iran

* Corresponding author: Bagher Bagherpour

Received  April 2018 Revised  July 2018 Published  December 2018

One of the basic problems in secret sharing is to determine the exact values of the information ratio of the access structures. This task is important from the practical point of view, since the security of any system degrades as the amount of secret information increases.

A Dutch windmill graph consists of the edge-disjoint cycles such that all of them meet in one vertex. In this paper, we determine the exact information ratio of secret sharing schemes on the Dutch windmill graphs. Furthermore, we determine the exact ratio of some related graph families.

Citation: Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005
References:
[1]

J. C. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, Advances in Cryptology-Crpto 88 Proceedings, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 403 (1990), 27-35. doi: 10.1007/0-387-34799-2_3.

[2]

G. R. Blakley, Safeguarding Cryptographic Keys, in AFIPS Conference Proceedings, 48 (1979), 313-317.

[3]

C. BlundoA. De SantisD. R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes, Advances in Cryptology-Proceeding of Eurocrypt 92, Lecture Notes in Comput. Sci, 658 (1993), 1-24.  doi: 10.1007/3-540-47555-9_1.

[4]

C. BlundoA. De Santis and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Designs Codes and Cryptography, 11 (1997), 107-122.  doi: 10.1023/A:1008216403325.

[5]

C. BlundoA. De SantisL. Gargano and U. Vaccaro, On the information rate of secret sharing schemes, Theoretical Computer Science, 154 (1996), 283-306.  doi: 10.1016/0304-3975(95)00065-8.

[6]

E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, Journal of Cryptology, 4 (1993), 157-167. 

[7]

R. M. CapocelliA. De SantisL. Gargano and U. Vaccaro, On the size of shares for secret sharing schemes, Journal of Cryptology, 6 (1993), 157-169. 

[8]

T. M. Cover and J.A. Thomas, Elements of Information Theory, 2$^{nd}$ edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.

[9]

L. Csirmas, The size of a share must be large, Journal of Cryptology, 10 (1997), 223-231.  doi: 10.1007/s001459900029.

[10]

L. Csirmas, An impossibility result on graph secret sharing, Designs Codes and Cryptography, 53 (2009), 195-209.  doi: 10.1007/s10623-009-9304-0.

[11]

L. Csirmaz and G. Tardos, Optimal information rate of secret sharing schemes on trees, IEEE Transaction on Information Theory, 59 (2013), 2527-2530.  doi: 10.1109/TIT.2012.2236958.

[12]

L. Csirmaz and P. Ligeti, On an infinite family of graphs with information ratio $1-\frac{2}{k}$, Computing, 85 (2009), 127-136.  doi: 10.1007/s00607-009-0039-6.

[13]

P. ErdősA. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar, 1 (1966), 215-235. 

[14]

R. G. Gallager, Information Theory and Reliable Communications, John Wiley, New York, 1986.

[15]

M. ItoA. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Proc. IEEE Globecorn, Tokyo, 87 (1987), 99-102. 

[16]

M. ItoA. Saito and T. Nishizeki, Multiple assignment scheme for sharing secret, Journal of Cryptology, 6 (1993), 15-20.  doi: 10.1007/BF02620229.

[17]

W. Jackson and Keith M. Martin, Perfect secret sharing schemes on five participants, Designs. Codes and Cryptography, 9 (1996), 267-286.  doi: 10.1007/BF00129769.

[18]

C. Padró and G. Sáez, Secret sharing with bipartite access structure, IEEE Transaction on Information Theory, 46 (2000), 2596-2604.  doi: 10.1109/18.887867.

[19]

C. Padró and L. Vazquez, Finding lower bounds on the complexity of secret sharing schemes by linear programming, Ninth Latin American Theoretical Informatics Symposium, LATIN 2010, Lecture Notes in Computer Science, 6034 (2010), 344-355.  doi: 10.1007/978-3-642-12200-2_31.

[20]

A. Shamir, How to share a secret, Communication of the ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.

[21]

D. R. Stinson, Decomposition constructions for secret sharing schemes, IEEE Transaction on Information Theory, 40 (1994), 118-125.  doi: 10.1109/18.272461.

[22]

D. R. Stinson, An explication of secret sharing schemes, Designs Codes and Cryptography, 2 (1992), 357-390.  doi: 10.1007/BF00125203.

[23]

H. M. Sun and B. L. Chen, Weighted decomposition construction for perfect secret sharing schemes, Compute Math. Appl., 43 (2002), 877-887.  doi: 10.1016/S0898-1221(01)00328-5.

[24]

M. Van dijk, On the information rate of perfect secret sharing schemes, Designs, Codes and Cryptography, 6 (1995), 143-169.  doi: 10.1007/BF01398012.

show all references

References:
[1]

J. C. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, Advances in Cryptology-Crpto 88 Proceedings, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 403 (1990), 27-35. doi: 10.1007/0-387-34799-2_3.

[2]

G. R. Blakley, Safeguarding Cryptographic Keys, in AFIPS Conference Proceedings, 48 (1979), 313-317.

[3]

C. BlundoA. De SantisD. R. Stinson and U. Vaccaro, Graph decompositions and secret sharing schemes, Advances in Cryptology-Proceeding of Eurocrypt 92, Lecture Notes in Comput. Sci, 658 (1993), 1-24.  doi: 10.1007/3-540-47555-9_1.

[4]

C. BlundoA. De Santis and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Designs Codes and Cryptography, 11 (1997), 107-122.  doi: 10.1023/A:1008216403325.

[5]

C. BlundoA. De SantisL. Gargano and U. Vaccaro, On the information rate of secret sharing schemes, Theoretical Computer Science, 154 (1996), 283-306.  doi: 10.1016/0304-3975(95)00065-8.

[6]

E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, Journal of Cryptology, 4 (1993), 157-167. 

[7]

R. M. CapocelliA. De SantisL. Gargano and U. Vaccaro, On the size of shares for secret sharing schemes, Journal of Cryptology, 6 (1993), 157-169. 

[8]

T. M. Cover and J.A. Thomas, Elements of Information Theory, 2$^{nd}$ edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.

[9]

L. Csirmas, The size of a share must be large, Journal of Cryptology, 10 (1997), 223-231.  doi: 10.1007/s001459900029.

[10]

L. Csirmas, An impossibility result on graph secret sharing, Designs Codes and Cryptography, 53 (2009), 195-209.  doi: 10.1007/s10623-009-9304-0.

[11]

L. Csirmaz and G. Tardos, Optimal information rate of secret sharing schemes on trees, IEEE Transaction on Information Theory, 59 (2013), 2527-2530.  doi: 10.1109/TIT.2012.2236958.

[12]

L. Csirmaz and P. Ligeti, On an infinite family of graphs with information ratio $1-\frac{2}{k}$, Computing, 85 (2009), 127-136.  doi: 10.1007/s00607-009-0039-6.

[13]

P. ErdősA. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar, 1 (1966), 215-235. 

[14]

R. G. Gallager, Information Theory and Reliable Communications, John Wiley, New York, 1986.

[15]

M. ItoA. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Proc. IEEE Globecorn, Tokyo, 87 (1987), 99-102. 

[16]

M. ItoA. Saito and T. Nishizeki, Multiple assignment scheme for sharing secret, Journal of Cryptology, 6 (1993), 15-20.  doi: 10.1007/BF02620229.

[17]

W. Jackson and Keith M. Martin, Perfect secret sharing schemes on five participants, Designs. Codes and Cryptography, 9 (1996), 267-286.  doi: 10.1007/BF00129769.

[18]

C. Padró and G. Sáez, Secret sharing with bipartite access structure, IEEE Transaction on Information Theory, 46 (2000), 2596-2604.  doi: 10.1109/18.887867.

[19]

C. Padró and L. Vazquez, Finding lower bounds on the complexity of secret sharing schemes by linear programming, Ninth Latin American Theoretical Informatics Symposium, LATIN 2010, Lecture Notes in Computer Science, 6034 (2010), 344-355.  doi: 10.1007/978-3-642-12200-2_31.

[20]

A. Shamir, How to share a secret, Communication of the ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.

[21]

D. R. Stinson, Decomposition constructions for secret sharing schemes, IEEE Transaction on Information Theory, 40 (1994), 118-125.  doi: 10.1109/18.272461.

[22]

D. R. Stinson, An explication of secret sharing schemes, Designs Codes and Cryptography, 2 (1992), 357-390.  doi: 10.1007/BF00125203.

[23]

H. M. Sun and B. L. Chen, Weighted decomposition construction for perfect secret sharing schemes, Compute Math. Appl., 43 (2002), 877-887.  doi: 10.1016/S0898-1221(01)00328-5.

[24]

M. Van dijk, On the information rate of perfect secret sharing schemes, Designs, Codes and Cryptography, 6 (1995), 143-169.  doi: 10.1007/BF01398012.

Figure 1.  The Dutch windmill graph $D_4^{(k)}$ with predefined labelling
Figure 2.  The friendship graph $F_k$ with predefined labelling
Table 1.  Subgraphs of the graph $C(\mathcal{F}_k)$
$G$ $V$
$S_1(V)$ $\{v_c, v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k-1) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_4 =\{(2k-1) \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_5 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
$G$ $V$
$S_1(V)$ $\{v_c, v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k-1) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_4 =\{(2k-1) \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_5 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
Table 2.  Subgraphs of the graph $C'(\mathcal{F}_k)$
$G$ $V$
$S_1(V)$ $\{v_c, v', v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$S'(V)$ $\{v_c, v' \}$ $\Pi_4 =\{1 \times S'(V) \}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_5 =\{2k \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_6 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
$G$ $V$
$S_1(V)$ $\{v_c, v', v^{1}_2, v^{1}_{n_1}, \ldots, v^{k}_{2}, v^{k}_{n_k}\}$ $\Pi_1 =\{(2k) \times S_{1}(V)\}$
$S^{i}_{1}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_2, v^{i}_{3}\}$ $\Pi_2 =\{1 \times S^{i}_1(V): i\in \{1, \ldots, k\}\}$
$S^{i}_{2}(V)$
$i\in \{1, \ldots, k\}$
$\{v_c, v^{i}_{n_i}, v^{i}_{n_i-1}\}$ $\Pi_3 =\{1 \times S^{i}_{2}(V): i\in \{1, \ldots, k\}\}$
$S'(V)$ $\{v_c, v' \}$ $\Pi_4 =\{1 \times S'(V) \}$
$P^{i}_1(V)$
$i\in \{1, \ldots, k\}$
$\{v^{i}_2, v^{i}_3, \ldots, v^{i}_{n_i}\}$ $\Pi_5 =\{2k \times P^{i}_1(V): i \in \{1, \ldots, k\}\}$
$P^{i}_2(V)$
$i\in \{1, \ldots, k\} $
$\{v^{i}_3, v^{i}_{4}, \ldots, v^{i}_{n_i-1}\}$ $\Pi_6 =\{1 \times P^{i}_2(V): i \in \{1, \ldots, k\}\}$
Table 3.  Subgraphs of the graph $D^{(k)}_{4}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k}\}$ $\{v_c v_j , v_c v_{j+2}: $ $ j \in \{1, 4, \ldots, 3k-2 \}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+1+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k}\}$ $\{v_c v_j , v_c v_{j+2}: $ $ j \in \{1, 4, \ldots, 3k-2 \}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+1+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
Table 4.  Subgraphs of the graph $D'^{(k)}_{4}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k},$ $v'\}$ $\{v_c v_j , v_c v_{j+2}, v_c v': j\in\{1, 4, $ $ \ldots, 3k-2\}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+2}$ $\{v_c, v' \}$ $\{v_c v' \}$
$G_{k+2+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v_c, v_1, v_3, \ldots, v_{3k-2}, v_{3k},$ $v'\}$ $\{v_c v_j , v_c v_{j+2}, v_c v': j\in\{1, 4, $ $ \ldots, 3k-2\}\}$
$G_{1+(i+2)/3}$
$i\in \{1, 4, \ldots 3k-2 \}$
$\{v_c, v_i, v_{i+1}, v_{i+2}\}$ $\{ v_c v_i, v_c v_{i+2}, v_i v_{i+1}, v_{i+1} v_{i+2}\}$
$G_{k+2}$ $\{v_c, v' \}$ $\{v_c v' \}$
$G_{k+2+(i+2)/3}$
$i\in \{1, 4, \ldots, 3k-2 \}$
$\{v_i, v_{i+1}, v_{i+2}\}$ $\{ v_i v_{i+1}, v_{i+1} v_{i+2}\}$
Table 5.  Subgraphs of the graph $v\nabla \mathcal{F}_k$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), V(H_2), $ $\ldots, V(H_k)\}$ $\{v w: w \in \{ V(H_1), \ldots, V(H_k)\}\}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+1+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), V(H_2), $ $\ldots, V(H_k)\}$ $\{v w: w \in \{ V(H_1), \ldots, V(H_k)\}\}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+1+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
Table 6.  Subgraphs of the graph $v\nabla \mathcal{F'}_k$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), \ldots, V(H_k), v'\} $ $\{v v', v w: w \in \{ V(H_1), \ldots, V(H_k) \}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+2}$ $\{v, v'\}$ $ \{v v' \}$
$G_{k+2+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
$G$ $V(G)$ $E(G)$
$G_1$ $\{v, V(H_1), \ldots, V(H_k), v'\} $ $\{v v', v w: w \in \{ V(H_1), \ldots, V(H_k) \}$
$G_{1+i}$
$i\in \{1, \ldots, k\}$
$\{v, V(H_i)\}$ $\{ E(H_i), v w:w \in V(H_i) \} $
$G_{k+2}$ $\{v, v'\}$ $ \{v v' \}$
$G_{k+2+i}$
$i\in \{1, \cdots, k \}$
$ V(H_i) $ $E(H_i)$
[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001

[3]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[4]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial and Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[5]

Chunxiang Guo, Shihao Zhang, Xuetong Jiang. The impact of retailer's demand information sharing strategies on manufacturer encroachment. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022165

[6]

Xiaomei Li, Renjing Liu, Zhongquan Hu, Jiamin Dong. Information sharing in two-tier supply chains considering cost reduction effort and information leakage. Journal of Industrial and Management Optimization, 2023, 19 (1) : 645-674. doi: 10.3934/jimo.2021200

[7]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[8]

Guoqiang Shi, Yong Wang, Dejian Xia, Yanfei Zhao. Information sharing when competing manufacturers adopt asymmetric channel in an e-tailer. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021207

[9]

Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, 2022, 16 (1) : 169-183. doi: 10.3934/amc.2020107

[10]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[11]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2023, 28 (1) : 408-425. doi: 10.3934/dcdsb.2022082

[12]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[13]

Oscar Patterson-Lomba, Muntaser Safan, Sherry Towers, Jay Taylor. Modeling the role of healthcare access inequalities in epidemic outcomes. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1011-1041. doi: 10.3934/mbe.2016028

[14]

Motahhareh Gharahi, Massoud Hadian Dehkordi. Average complexities of access structures on five participants. Advances in Mathematics of Communications, 2013, 7 (3) : 311-317. doi: 10.3934/amc.2013.7.311

[15]

Reza Kaboli, Shahram Khazaei, Maghsoud Parviz. On ideal and weakly-ideal access structures. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021017

[16]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[17]

Rafael Bravo De La Parra, Luis Sanz. A discrete model of competing species sharing a parasite. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2121-2142. doi: 10.3934/dcdsb.2019204

[18]

Osman Palanci, Mustafa Ekici, Sirma Zeynep Alparslan Gök. On the equal surplus sharing interval solutions and an application. Journal of Dynamics and Games, 2021, 8 (2) : 139-150. doi: 10.3934/jdg.2020023

[19]

Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959-977. doi: 10.3934/mbe.2013.10.959

[20]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (455)
  • HTML views (419)
  • Cited by (0)

Other articles
by authors

[Back to Top]