\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The weight distribution of a class of p-ary cyclic codes and their applications

  • * Corresponding author: Shixin Zhu

    * Corresponding author: Shixin Zhu 
This research is supported in part by the National Natural Science Foundation of China under Project 61572168, Project 61772168 and Project 11501156, the Natural Science Foundation of Anhui Province under Grant 1808085MA15 and the Key University Science Research Project of Anhui Province under Grant KJ2018A0497.
Abstract Full Text(HTML) Figure(0) / Table(6) Related Papers Cited by
  • Cyclic codes over finite field have been studied for decades due to their wide applications in communication and storage systems. However their weight distributions are known only in a few cases. In this paper, we investigate a class of $ p$-ary cyclic codes whose duals have three zeros, where $ p$ is an odd prime. The weight distributions of the class of cyclic codes for all distinct cases are determined explicitly. The results indicate that these codes contain five-weight codes, seven-weight codes and eleven-weight codes. Some of these codes are optimal. Moreover, the covering structures of the class of codes are considered and being used to construct secret sharing schemes.

    Mathematics Subject Classification: Primary: 94B05, 11T71; Secondary: 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table Ⅰ.  Weight distribution of the cyclic code C for odd m in Theorem 3.1

    Hamming Weight $i$ Frequency $A_i$
    $0$ $1$
    $(p-1)p^{m-1}$ $ (p^m-1)(p^{m-1}+1)$
    $(p-1)p^{m-1}-1$ $ (p^m-1)(p^{m-1}+1)(p-1)$
    $(p-1)p^{m-1}-p^{\frac{m-1}{2}}$ $\frac{1}{2}(p^m-1)(p^{m-1}+p^{\frac{m-1}{2}})(p-1) $
    $ (p-1)p^{m-1}-p^{\frac{m-1}{2}}-1$ $\frac{1}{2}(p^m-1)\big((p-1)p^{m-1}-p^{\frac{m-1}{2}}\big)(p-1) $
    $ (p-1)p^{m-1}+p^{\frac{m-1}{2}}$ $\frac{1}{2}(p^m-1)(p^{m-1}-p^{\frac{m-1}{2}})(p-1)$
    $ (p-1)p^{m-1}+p^{\frac{m-1}{2}}-1$ $\frac{1}{2}(p^m-1)\big((p-1)p^{m-1}+p^{\frac{m-1}{2}}\big)(p-1) $
    $ p^{m}-1$ $p-1$
     | Show Table
    DownLoad: CSV

    Table Ⅱ.  Weight distribution of the cyclic code C for even m in Theorem 3.1

    Hamming Weight $i$ Frequency $A_i$
    $0$ $1$
    $(p-1)p^{m-1}$ $p^m-1 $
    $(p-1)p^{m-1}-1$ $(p^m-1)(p-1) $
    $(p-1)(p^{m-1}-p^{\frac{m-2}{2}})$ $\frac{1}{2}(p^m-1)(p^{m-1}+(p-1)p^{\frac{m-2}{2}}) $
    $ (p-1)(p^{m-1}-p^{\frac{m-2}{2}})-1$ $\frac{1}{2}(p^m-1)(p^{m-1}-p^{\frac{m-2}{2}})(p-1) $
    $(p-1)p^{m-1}-p^{\frac{m-2}{2}}$ $\frac{1}{2}(p^m-1)(p^{m-1}+p^{\frac{m-2}{2}})(p-1) $
    $(p-1)p^{m-1}-p^{\frac{m-2}{2}}-1$ $\frac{1}{2}(p^m-1)((p-1)p^{m-1}-p^{\frac{m-2}{2}})(p-1) $
    $ (p-1)p^{m-1}+p^{\frac{m-2}{2}}$ $\frac{1}{2}(p^m-1)(p^{m-1}-p^{\frac{m-2}{2}})(p-1) $
    $ (p-1)p^{m-1}+p^{\frac{m-2}{2}}-1$ $\frac{1}{2}(p^m-1)((p-1)p^{m-1}+p^{\frac{m-2}{2}})(p-1) $
    $ (p-1)(p^{m-1}+p^{\frac{m-2}{2}})$ $\frac{1}{2}(p^m-1)(p^{m-1}+(p-1)p^{\frac{m-2}{2}})$
    $ (p-1)(p^{m-1}+p^{\frac{m-2}{2}})-1$ $\frac{1}{2}(p^m-1)(p^{m-1}+p^{\frac{m-2}{2}})(p-1)$
    $ p^{m}-1$ $p-1 $
     | Show Table
    DownLoad: CSV

    Table Ⅲ.  Weight distribution of the cyclic code C for even m in Theorem 3.2

    Hamming Weight $i$ Frequency $A_i$
    $0$ $1$
    $(p-1)p^{m-1}$ $(p^m-1)(1+p^{m-d}-p^{m-2d}) $
    $(p-1)p^{m-1}-1$ $ (p-1)(p^m-1)(1+p^{m-d}-p^{m-2d})$
    $(p-1)(p^{m-1}-p^{\frac{m+2d-2}{2}})$ $(p^{m-2d-1}-(p-1)p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1}$
    $ (p-1)(p^{m-1}-p^{\frac{m+2d-2}{2}})-1$ $(p-1)(p^{m-2d-1}-p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1} $
    $(p-1)p^{m-1}-p^{\frac{m-2}{2}}$ $(p-1)(p^{m-1}+p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1}$
    $(p-1)p^{m-1}-p^{\frac{m-2}{2}}-1$ $(p-1)((p-1)p^{m-1}-p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1} $
    $ (p-1)p^{m-1}+p^{\frac{m+2d-2}{2}}$ $(p-1)(p^{m-2d-1}-p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1} $
    $ (p-1)p^{m-1}+p^{\frac{m+2d-2}{2}}-1$ $(p-1)((p-1)p^{m-2d-1}+ p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1}$
    $ (p-1)(p^{m-1}+p^{\frac{m-2}{2}})$ $(p^{m-1}-(p-1)p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1}$
    $ (p-1)(p^{m-1}+p^{\frac{m-2}{2}})-1$ $(p-1)(p^{m-1}+p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1} $
    $ p^{m}-1$ $p-1 $
     | Show Table
    DownLoad: CSV

    Table Ⅳ.  Weight distribution of the cyclic code C for even m in Theorem 3.2

    Hamming Weight $i$ Frequency $A_i$
    $0$ $1$
    $(p-1)p^{m-1}$ $ (p^m-1)(1+p^{m-d}-p^{m-2d})$
    $(p-1)p^{m-1}-1$ $ (p-1)(p^m-1)(1+p^{m-d}-p^{m-2d})$
    $(p-1)(p^{m-1}-p^{\frac{m-2}{2}})$ $(p^{m-1}+(p-1)p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1} $
    $ (p-1)(p^{m-1}-p^{\frac{m-2}{2}})-1$ $(p-1)(p^{m-1}-p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1} $
    $(p-1)p^{m-1}-p^{\frac{m+2d-2}{2}}$ $(p-1)(p^{m-2d-1}+p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1} $
    $(p-1)p^{m-1}-p^{\frac{m+2d-2}{2}}-1$ $(p-1)((p-1)p^{m-2d-1}-p^{\frac{m-2d-2}{2}})\dfrac{(p^m-1)}{p^d+1}$
    $ (p-1)p^{m-1}+p^{\frac{m-2}{2}}$ $(p-1)(p^{m-1}-p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1} $
    $ (p-1)p^{m-1}+p^{\frac{m-2}{2}}-1$ $(p-1)((p-1)p^{m-1}+p^{\frac{m-2}{2}})\dfrac{p^d(p^m-1)}{p^d+1} $
    $ (p-1)(p^{m-1}+p^{\frac{m+2d-2}{2}})$ $(p^{m-2d-1}-(p-1)p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1}$
    $ (p-1)(p^{m-1}+p^{\frac{m+2d-2}{2}})-1$ $(p-1)(p^{m-2d-1}+p^{\frac{m-2d-2}{2}})\dfrac{p^m-1}{p^d+1} $
    $ p^{m}-1$ $p-1 $
     | Show Table
    DownLoad: CSV

    Table Ⅴ.  Weight distribution of the cyclic code C for even m in Corollary 1

    Hamming Weight $i$ Frequency $A_i$
    $0$ $1$
    $(p-1)p^{m-1}$ $(p^m-1) $
    $(p-1)p^{m-1}-1$ $ (p-1)(p^m-1)$
    $(p-1)p^{m-1}-p^{\frac{m-2}{2}}$ $(p-1)(p^{m-1}+p^{\frac{m-2}{2}})(p^d-1)$
    $(p-1)p^{m-1}-p^{\frac{m-2}{2}}-1$ $(p-1)((p-1)p^{m-1}-p^{\frac{m-2}{2}})(p^d-1) $
    $ (p-1)(p^{m-1}+p^{\frac{m-2}{2}})$ $(p^{m-1}-(p-1)p^{\frac{m-2}{2}})(p^d-1)$
    $ (p-1)(p^{m-1}+p^{\frac{m-2}{2}})-1$ $(p-1)(p^{m-1}+p^{\frac{m-2}{2}})(p^d-1) $
    $ p^{m}-1$ $p-1 $
     | Show Table
    DownLoad: CSV

    Table Ⅵ.  Weight distribution of the cyclic code C for even m in Corollary 2

    Hamming Weight $i$ Frequency $A_i$
    $0$ $1$
    $(p-1)p$ $(p^2-1) $
    $p(p-1)-1$ $ 2(p-1)(p^2-1)$
    $(p-1)p-2$ $(p-1)^2(p^2-p-1) $
    $ p^2-2$ $(p-1)(p^2-1) $
    $ p^2-1$ $2(p-1) $
     | Show Table
    DownLoad: CSV
  • [1] C. CarletC. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.
    [2] P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576.  doi: 10.1109/tit.1975.1055435.
    [3] C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511.
    [4] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.
    [5] C. DingY. LiuC. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.  doi: 10.1109/TIT.2011.2165314.
    [6] C. DingY. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inf. Theory, 59 (2013), 7940-7946.  doi: 10.1109/TIT.2013.2281205.
    [7] C. DingD. Kohel and S. Ling, Secret sharing with a class of ternary codes, Theo. Comput. Sci., 246 (2000), 285-298.  doi: 10.1016/S0304-3975(00)00207-3.
    [8] K. Feng and J. Luo, Value distributions of exponential sums from perfect nonlinear functions and their applications, IEEE Trans. Inf. Theory, 53 (2007), 3035-3041.  doi: 10.1109/TIT.2007.903153.
    [9] K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.  doi: 10.1016/j.ffa.2007.03.003.
    [10] T. Feng, On cyclic codes of length $ 2^{2^r}-1$ with two zeros whose dual code have three weights, Des. Codes Cryptogr., 62 (2012), 253-258.  doi: 10.1007/s10623-011-9514-0.
    [11] C. LiQ. Yue and F.-W. Fu, Complete weight enumerators of some cyclic codes, Des. Codes Cryptogr., 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.
    [12] C. LiN. LiT. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014), 4710-4721.  doi: 10.1109/TIT.2014.2329694.
    [13] C. LiQ. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902.  doi: 10.1109/TIT.2014.2317785.
    [14] C. LiQ. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.
    [15] C. LiS. Ling and L. Qu, On the covering structures of two classes of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 55 (2009), 70-82.  doi: 10.1109/TIT.2008.2008145.
    [16] R. Lidl and H. Niederreiter, Finite Fields, Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
    [17] Y. Liu and H. Yan, A class of five-weight cyclic codes and their weight distribution, Des. Codes Cryptogr., 79 (2016), 353-366.  doi: 10.1007/s10623-015-0056-8.
    [18] X. Liu and Y. Luo, The weight distributions of some cyclic codes with three or four nonzeros over $ F_3$, Des. Codes Cryptogr., 73 (2014), 747-768.  doi: 10.1007/s10623-013-9824-5.
    [19] J. Luo and K. Feng, Cyclic codes and sequences from generalized CoulterMatthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.  doi: 10.1109/TIT.2008.2006394.
    [20] J. Luo and K. Feng, On the weight distributions of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.
    [21] F. E. B. Martinez and C. R. G. Vergara, Weight enumerator of some irreducible cyclic codes, Des. Codes Cryptogr., 78 (2016), 703-712.  doi: 10.1007/s10623-014-0026-6.
    [22] J. L. Massey, Minimal codewords and secret sharing, in Proc. 6th Joint Swedish-Russian Workshop Inf. Theory, Molle, Sweden, (1993), 276-279.
    [23] J. L. Massey, Some applications of coding theory, Cryptography, codes and Ciphers: Cryptography and Coding IV, (1995), 33-47. 
    [24] K. U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory, J. Algebraic Comb., 42 (2015), 635-670.  doi: 10.1007/s10801-015-0595-0.
    [25] Z. Shi and F.-W. Fu, A complete weight enumerators of some irreducible cyclic codes, Discrete Applied Math., 219 (2017), 182-192.  doi: 10.1016/j.dam.2016.11.008.
    [26] M. XiongN. LiZ. Zhou and C. Ding, Weight distribution of cyclic codes with arbitrary number of generalized Niho type zeroes, Des. Codes Cryptogr., 78 (2016), 713-730.  doi: 10.1007/s10623-014-0027-5.
    [27] M. Xiong, The weight distributions of a class of cyclic codes Ⅱ, Des. Codes Cryptogr., 72 (2014), 511-528.  doi: 10.1007/s10623-012-9785-0.
    [28] H. Yan and C. Liu, Two classes of cyclic codes and their weight enumerator, Des. Codes Cryptogr., 81 (2016), 1-9.  doi: 10.1007/s10623-015-0125-z.
    [29] S. YangZ. Yao and C. Zhao, The weight distributions of two classes of pary cyclic codes with few weights, Finite Fields Appl., 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.
    [30] J. YangM. XiongC. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993.  doi: 10.1109/TIT.2013.2266731.
    [31] J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.
    [32] J. YuanC. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717.  doi: 10.1109/TIT.2005.862125.
    [33] X. ZengL. HuW. JiangQ. Yue and X. Cao, The weight distribution of a class of pary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.
    [34] D. ZhengX. WangH. Hu and X. Zeng, The weight distributions of two classes of pary cyclic codes, Finite Fields Appl., 29 (2014), 202-224.  doi: 10.1016/j.ffa.2014.05.001.
    [35] Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.
    [36] Z. Zhou and C. Ding, Seven classes of three-weight cyclic codes, IEEE Trans. Commun., 61 (2013), 4120-4126. 
  • 加载中

Tables(6)

SHARE

Article Metrics

HTML views(491) PDF downloads(403) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return