[1]
|
C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.
doi: 10.1109/TIT.2005.847722.
|
[2]
|
P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576.
doi: 10.1109/tit.1975.1055435.
|
[3]
|
C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.
doi: 10.1109/TIT.2008.2011511.
|
[4]
|
C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.
doi: 10.1016/j.disc.2012.11.009.
|
[5]
|
C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.
doi: 10.1109/TIT.2011.2165314.
|
[6]
|
C. Ding, Y. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inf. Theory, 59 (2013), 7940-7946.
doi: 10.1109/TIT.2013.2281205.
|
[7]
|
C. Ding, D. Kohel and S. Ling, Secret sharing with a class of ternary codes, Theo. Comput. Sci., 246 (2000), 285-298.
doi: 10.1016/S0304-3975(00)00207-3.
|
[8]
|
K. Feng and J. Luo, Value distributions of exponential sums from perfect nonlinear functions and their applications, IEEE Trans. Inf. Theory, 53 (2007), 3035-3041.
doi: 10.1109/TIT.2007.903153.
|
[9]
|
K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.
doi: 10.1016/j.ffa.2007.03.003.
|
[10]
|
T. Feng, On cyclic codes of length $ 2^{2^r}-1$ with two zeros whose dual code have three weights, Des. Codes Cryptogr., 62 (2012), 253-258.
doi: 10.1007/s10623-011-9514-0.
|
[11]
|
C. Li, Q. Yue and F.-W. Fu, Complete weight enumerators of some cyclic codes, Des. Codes Cryptogr., 80 (2016), 295-315.
doi: 10.1007/s10623-015-0091-5.
|
[12]
|
C. Li, N. Li, T. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014), 4710-4721.
doi: 10.1109/TIT.2014.2329694.
|
[13]
|
C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902.
doi: 10.1109/TIT.2014.2317785.
|
[14]
|
C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.
doi: 10.1016/j.ffa.2014.01.009.
|
[15]
|
C. Li, S. Ling and L. Qu, On the covering structures of two classes of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 55 (2009), 70-82.
doi: 10.1109/TIT.2008.2008145.
|
[16]
|
R. Lidl and H. Niederreiter, Finite Fields, Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
|
[17]
|
Y. Liu and H. Yan, A class of five-weight cyclic codes and their weight distribution, Des. Codes Cryptogr., 79 (2016), 353-366.
doi: 10.1007/s10623-015-0056-8.
|
[18]
|
X. Liu and Y. Luo, The weight distributions of some cyclic codes with three or four nonzeros over $ F_3$, Des. Codes Cryptogr., 73 (2014), 747-768.
doi: 10.1007/s10623-013-9824-5.
|
[19]
|
J. Luo and K. Feng, Cyclic codes and sequences from generalized CoulterMatthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.
doi: 10.1109/TIT.2008.2006394.
|
[20]
|
J. Luo and K. Feng, On the weight distributions of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.
doi: 10.1109/TIT.2008.2006424.
|
[21]
|
F. E. B. Martinez and C. R. G. Vergara, Weight enumerator of some irreducible cyclic codes, Des. Codes Cryptogr., 78 (2016), 703-712.
doi: 10.1007/s10623-014-0026-6.
|
[22]
|
J. L. Massey, Minimal codewords and secret sharing, in Proc. 6th Joint Swedish-Russian Workshop Inf. Theory, Molle, Sweden, (1993), 276-279.
|
[23]
|
J. L. Massey, Some applications of coding theory, Cryptography, codes and Ciphers: Cryptography and Coding IV, (1995), 33-47.
|
[24]
|
K. U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory, J. Algebraic Comb., 42 (2015), 635-670.
doi: 10.1007/s10801-015-0595-0.
|
[25]
|
Z. Shi and F.-W. Fu, A complete weight enumerators of some irreducible cyclic codes, Discrete Applied Math., 219 (2017), 182-192.
doi: 10.1016/j.dam.2016.11.008.
|
[26]
|
M. Xiong, N. Li, Z. Zhou and C. Ding, Weight distribution of cyclic codes with arbitrary number of generalized Niho type zeroes, Des. Codes Cryptogr., 78 (2016), 713-730.
doi: 10.1007/s10623-014-0027-5.
|
[27]
|
M. Xiong, The weight distributions of a class of cyclic codes Ⅱ, Des. Codes Cryptogr., 72 (2014), 511-528.
doi: 10.1007/s10623-012-9785-0.
|
[28]
|
H. Yan and C. Liu, Two classes of cyclic codes and their weight enumerator, Des. Codes Cryptogr., 81 (2016), 1-9.
doi: 10.1007/s10623-015-0125-z.
|
[29]
|
S. Yang, Z. Yao and C. Zhao, The weight distributions of two classes of pary cyclic codes with few weights, Finite Fields Appl., 44 (2017), 76-91.
doi: 10.1016/j.ffa.2016.11.004.
|
[30]
|
J. Yang, M. Xiong, C. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993.
doi: 10.1109/TIT.2013.2266731.
|
[31]
|
J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412.
|
[32]
|
J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717.
doi: 10.1109/TIT.2005.862125.
|
[33]
|
X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of pary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.
doi: 10.1016/j.ffa.2009.12.001.
|
[34]
|
D. Zheng, X. Wang, H. Hu and X. Zeng, The weight distributions of two classes of pary cyclic codes, Finite Fields Appl., 29 (2014), 202-224.
doi: 10.1016/j.ffa.2014.05.001.
|
[35]
|
Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.
doi: 10.1016/j.ffa.2013.08.005.
|
[36]
|
Z. Zhou and C. Ding, Seven classes of three-weight cyclic codes, IEEE Trans. Commun., 61 (2013), 4120-4126.
|