Advanced Search
Article Contents
Article Contents

Double circulant self-dual and LCD codes over Galois rings

  • * Corresponding author: Minjia Shi

    * Corresponding author: Minjia Shi 
This paper is supported by National Natural Science Foundation of China (61672036), Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20).
Abstract Full Text(HTML) Related Papers Cited by
  • This paper investigates the existence, enumeration, and asymptotic performance of self-dual and LCD double circulant codes over Galois rings of characteristic $p^2$ and order $p^4$ with $p$ an odd prime. When $p \equiv 3 \ ({\rm mod} \ 4),$ we give a method to construct a duality preserving bijective Gray map from such a Galois ring to $\mathbb{Z}_{p^2}^2.$ Closed formed enumeration formulas for double circulant codes that are self-dual (resp. LCD) are derived as a function of the length of these codes. Using random coding, we obtain families of asymptotically good self-dual and LCD codes over $\mathbb{Z}_{p^2}$ with respect to the metric induced by the standard ${\mathbb{F}}_p$ -valued Gray maps.

    Mathematics Subject Classification: Primary: 94B65; Secondary: 13K05, 13.95.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AlahmadiF. Özdemir and P. Solé, On self-dual double circulant codes, Des. Codes Cryptogr., 86 (2018), 1257-1265.  doi: 10.1007/s10623-017-0393-x.
    [2] C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. in Math. of Comm., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.
    [3] S. T. DoughertyT. A. Gulliver and J. Wong, Self-Dual Codes over $ \mathbb{Z}_8$ and $ \mathbb{Z}_9$, Des. Codes Cryptogr., 41 (2006), 235-249.  doi: 10.1007/s10623-006-9000-2.
    [4] S. T. DoughertyJ. L. KimB. ÖzkayaL. Sok and P. Solé, The combinatorics of LCD codes: linear programming bound and orthogonal matrices, Int. J. of Information and Coding Theory, 4 (2017), 116-128.  doi: 10.1504/IJICOT.2017.083827.
    [5] M. Harada and A. Munemasa, On the classification of self-dual $ \mathbb{Z}_k$-codes, Lecture Notes in Comput. Sci., Springer, 5921 (2009), 78-90. doi: 10.1007/978-3-642-10868-6_6.
    [6] W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.
    [7] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, (2nd ed.), Springer, 1990. doi: 10.1007/978-1-4757-2103-4.
    [8] J.-L. Kim and Y. Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr., 45 (2007), 247-258.  doi: 10.1007/s10623-007-9117-y.
    [9] S. Ling and T. Blackford, $ \mathbb{Z}_{p^{k+1}}$-linear codes, IEEE Trans. Inf. Theory, 48 (2002), 2592-2605.  doi: 10.1109/TIT.2002.801473.
    [10] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅱ: Chain rings, Des. Codes Cryptogr., 30 (2003), 113-130.  doi: 10.1023/A:1024715527805.
    [11] Y. LiuM. ShiZ. Sepasdar and P. Solé, Construction of Hermitian Self-dual constacyclic codes over $ {\mathbb{F}}_{q^2}+u{\mathbb{F}}_{q^2}$, Appl. and Comput. Math., 15 (2016), 359-369. 
    [12] J. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.
    [13] P. Moree, On primes in arithmetic progression having a prescribed primitive root, Journal of Number Theory, 78 (1999), 85-98.  doi: 10.1006/jnth.1999.2409.
    [14] M. Shi, A. Alahmadi and P. Solé, Codes and Rings: Theory and Practice, Academic Press, 2017.
    [15] Z. X. Wan, Finite Fields and Galois Rings, World Scientific, 2003.
  • 加载中

Article Metrics

HTML views(1778) PDF downloads(1662) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint