\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the security of the WOTS-PRF signature scheme

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We identify a flaw in the security proof and a flaw in the concrete security analysis of the WOTS-PRF variant of the Winternitz one-time signature scheme, and discuss the implications to its concrete security.

    Mathematics Subject Classification: Primary: 94A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The incomplete $\alpha$'th Winternitz hash chain in ${\mathcal{A}}_{{\rm KOW}}$'s experiment

    Figure 2.  The tree of $w$-keychains to $pk_{\alpha}$

  • [1] M. Bellare, New proofs for NMAC and HMAC: Security without collision resistance, in: Advances in Cryptology - CRYPTO 2006, LNCS, 4117 (2006), 602-619. doi: 10.1007/11818175_36.
    [2] D. Bernstein and T. Lange, Non-uniform cracks in the concrete: The power of free computation, in: Advances in Cryptology - ASIACRYPT 2013, LNCS, 8270 (2013), 321-340. doi: 10.1007/978-3-642-42045-0_17.
    [3] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing and M. Rückert, On the security of the Winternitz one-time signature scheme, in: Progress in Cryptology - AFRICACRYPT 2011, LNCS, 6737 (2011), 363-378. doi: 10.1007/978-3-642-21969-6_23.
    [4] J. BuchmannE. DahmenS. ErethA. Hülsing and M. Rückert, On the security of the Winternitz one-time signature scheme, International Journal of Applied Cryptography, 3 (2013), 84-96.  doi: 10.1504/IJACT.2013.053435.
    [5] J. Buchmann, E. Dahmen and A. H¨ulsing, XMSS - a practical forward secure signature scheme based on minimal security assumptions, in: Post-Quantum Cryptography - PQCrypto 2011, LNCS, 7071 (2011), 117-129. doi: 10.1007/978-3-642-25405-5_8.
    [6] C. Dods, N. Smart and M. Stam, Hash based digital signature schemes, in: Cryptography and Coding, LNCS, 3796 (2005), 96-115. doi: 10.1007/11586821_8.
    [7] E. Eaton, Leighton-Micali hash-based signatures in the quantum random-oracle model, in: Selected Areas in Cryptography - SAC 2017, LNCS 10719 (2018), 263-280.
    [8] S. EvenO. Goldreich and S. Micali, On-line/off-line digital signatures, Journal of Cryptology, 9 (1996), 35-67.  doi: 10.1007/BF02254791.
    [9] O. GoldreichS. Goldwasser and S. Micali, How to construct random functions, Journal of the ACM, 33 (1986), 792-807.  doi: 10.1145/6490.6503.
    [10] J. HåstadR. ImpagliazzoL. Levin and M. Luby, A pseudorandom generator from any oneway function, SIAM Journal on Computing, 28 (1999), 1364-1396.  doi: 10.1137/S0097539793244708.
    [11] A. Hülsing, Practical Forward Secure Signatures Using Minimal Security Assumptions, Ph. D. thesis, Technical University of Darmstadt, 2013.
    [12] A. Hülsing, W-OTS+ - Shorter signatures for hash-based signature schemes, in: Progress in Cryptology - AFRICACRYPT 2013, LNCS 7918 (2013), 173-188.
    [13] A. Hülsing, C. Busold and J. Buchmann, Forward secure signatures on smart cards, in: Selected Areas in Cryptography - SAC 2012, LNCS 7707 (2013), 66-80.
    [14] A. Hülsing, D. Butin, S. Gazdag, J. Rijneveld and A. Mohaisen, XMSS: eXtended Merkle Signature Scheme, RFC 8391, May 31, 2018; available at https://datatracker.ietf.org/doc/rfc8391/.
    [15] A. Hülsing, L. Rausch and J. Buchmann, Optimal parameters for XMSSMT, in: Availability, Reliability, and Security in Information Systems and HCI - CD-ARES 2013, LNCS 8128 (2013), 194-208.
    [16] A. Hülsing, J. Rijneveld and F. Song, Mitigating multi-target attacks in hash-based signatures, in: Public-Key Cryptography - PKC 2016, LNCS 9614 (2016), 387-416. doi: 10.1007/978-3-662-49384-7_15.
    [17] J. Katz, Analysis of a proposed hash-based signature scheme, in: Security Standardisation Research - SSR 2016, LNCS 10074 (2016), 261-273.
    [18] N. Koblitz and A. Menezes, Another look at HMAC, Journal of Mathematical Cryptology, 7 (2013), 225-251.  doi: 10.1515/jmc-2013-5004.
    [19] N. Koblitz and A. Menezes, Another look at non-uniformity, Groups Complexity Cryptology, 5 (2013), 117-139.  doi: 10.1515/gcc-2013-0008.
    [20] L. Lamport, Constructing digital signatures from a one way function, Technical Report CSL-98, SRI International, 1979.
    [21] D. McGrew, M. Curcio and S. Fluhrer, Hash-based signatures, Internet Draft, April 5, 2018; available at https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/.
    [22] R. Merkle, A digital signature based on a conventional encryption function, in: Advances in Cryptology - CRYPTO '87, LNCS 293 (1988), 369-378.
    [23] M. Raab and A. Steger, "Balls into bins" - = - a simple and tight analysis, in: Randomization and Approximation Techniques in Computer Science - RANDOM 1998, LNCS 1518 (1998), 159-170. doi: 10.1007/3-540-49543-6_13.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(1635) PDF downloads(443) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return