May  2019, 13(2): 213-220. doi: 10.3934/amc.2019014

Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan

Received  January 2017 Published  February 2019

In this paper, we consider additive circulant graph codes which are self-dual additive $ \mathbb{F}_4 $-codes. We classify all additive circulant graph codes of length $ n = 30, 31 $ and $ 34 \le n \le 40 $ having the largest minimum weight. We also classify bordered circulant graph codes of lengths up to 40 having the largest minimum weight.

Citation: Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014
References:
[1]

B. Alspach and T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25 (1979), 97-108. doi: 10.1016/0012-365X(79)90011-6. Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125. Google Scholar

[3]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387. doi: 10.1109/18.681315. Google Scholar

[4]

S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math., 339 (2016), 84-94. doi: 10.1016/j.disc.2015.07.002. Google Scholar

[5]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to $12$, J. Combin. Theory Ser. A, 113 (2006), 1351-1367. doi: 10.1016/j.jcta.2005.12.004. Google Scholar

[6]

L. E. Danielsen and M. G. Parker, Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130. doi: 10.1007/s10623-010-9469-6. Google Scholar

[7]

B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combinatorial Theory, 9 (1970), 297-307. doi: 10.1016/S0021-9800(70)80068-0. Google Scholar

[8]

M. Grassl and M. Harada, New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs, Discrete Math., 340 (2017), 399-403. doi: 10.1016/j.disc.2016.08.023. Google Scholar

[9]

F. J. MacWilliamsA. M. OdlyzkoN. J. A. Sloane and H. N. Ward, Self-dual codes over $GF(4)$, J. Combin. Theory Ser. A, 25 (1978), 288-318. doi: 10.1016/0097-3165(78)90021-3. Google Scholar

[10]

Z. Varbanov, Additive circulant graph codes over GF(4), Math. Maced., 6 (2008), 73-79. Google Scholar

[11]

Z. Varbanov, T. Todorov and M. Hristova, A method for constructing DNA codes from additive self-dual codes over GF(4), ROMAI J., 10 (2014), 203-211. Google Scholar

show all references

References:
[1]

B. Alspach and T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25 (1979), 97-108. doi: 10.1016/0012-365X(79)90011-6. Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125. Google Scholar

[3]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387. doi: 10.1109/18.681315. Google Scholar

[4]

S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math., 339 (2016), 84-94. doi: 10.1016/j.disc.2015.07.002. Google Scholar

[5]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to $12$, J. Combin. Theory Ser. A, 113 (2006), 1351-1367. doi: 10.1016/j.jcta.2005.12.004. Google Scholar

[6]

L. E. Danielsen and M. G. Parker, Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130. doi: 10.1007/s10623-010-9469-6. Google Scholar

[7]

B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combinatorial Theory, 9 (1970), 297-307. doi: 10.1016/S0021-9800(70)80068-0. Google Scholar

[8]

M. Grassl and M. Harada, New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs, Discrete Math., 340 (2017), 399-403. doi: 10.1016/j.disc.2016.08.023. Google Scholar

[9]

F. J. MacWilliamsA. M. OdlyzkoN. J. A. Sloane and H. N. Ward, Self-dual codes over $GF(4)$, J. Combin. Theory Ser. A, 25 (1978), 288-318. doi: 10.1016/0097-3165(78)90021-3. Google Scholar

[10]

Z. Varbanov, Additive circulant graph codes over GF(4), Math. Maced., 6 (2008), 73-79. Google Scholar

[11]

Z. Varbanov, T. Todorov and M. Hristova, A method for constructing DNA codes from additive self-dual codes over GF(4), ROMAI J., 10 (2014), 203-211. Google Scholar

Table 1.  Additive circulant graph codes
$ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref.
$ 1 $ $ 1 $ $ 1 $ - $ 21 $ $ 7 $ $ 11 $ - [10]
$ 2 $ $ 2 $ $ 0 $ 1 $ 22 $ $ 8 $ $ 0 $ $ 14 $ [10]
$ 3 $ $ 2 $ $ 1 $ - $ 23 $ $ 8 $ $ 2 $ - [10]
$ 4 $ $ 2 $ $ 1 $ 2 $ 24 $ $ 8 $ $ 5 $ $ 46 $ [10]
$ 5 $ $ 3 $ $ 1 $ - $ 25 $ $ 8 $ $ 31 $ - [10]
$ 6 $ $ 4 $ $ 0 $ 1 $ 26 $ $ 8 $ $ 49 $ $ 161 $ [10]
$ 7 $ $ 3 $ $ 1 $ - $ 27 $ $ 8 $ $ 140 $ - [10]
$ 8 $ $ 4 $ $ 0 $ 1 $ 28 $ $ 10 $ $ 0 $ $ 1 $ [10]
$ 9 $ $ 4 $ $ 1 $ - $ 29 $ $ 11 $ $ 1 $ - [10]
$ 10 $ $ 4 $ $ 3 $ 5 $ 30 $ $ 12 $ $ 0 $ $ 1 $
$ 11 $ $ 4 $ $ 2 $ - $ 31 $ $ 10 $ $ 5 $ -
$ 12 $ $ 6 $ $ 0 $ 1 $ 32 $ $ 10 $ $ 2 $ $ 106 $ [10]
$ 13 $ $ 5 $ $ 2 $ - [10] $ 33 $ $ 10 $ $ 76 $ - [10]
$ 14 $ $ 6 $ $ 0 $ 3 [10] $ 34 $ $ 10 $ $ 115 $ $ 851 $
$ 15 $ $ 6 $ $ 2 $ - [10] $ 35 $ $ 10 $ $ 595 $ -
$ 16 $ $ 6 $ $ 1 $ 5 [10] $ 36 $ $ 11 $ $ 1 $ $ 0 $
$ 17 $ $ 7 $ $ 1 $ - [10] $ 37 $ $ 11 $ $ 17 $ -
$ 18 $ $ 6 $ $ 16 $ 36 [10] $ 38 $ $ 12 $ $ 0 $ $ 22 $
$ 19 $ $ 7 $ $ 4 $ - [10] $ 39 $ $ 11 $ $ 276 $ -
$ 20 $ $ 8 $ $ 0 $ 2 [10] $ 40 $ $ 12 $ $ 0 $ $ 213 $
$ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref.
$ 1 $ $ 1 $ $ 1 $ - $ 21 $ $ 7 $ $ 11 $ - [10]
$ 2 $ $ 2 $ $ 0 $ 1 $ 22 $ $ 8 $ $ 0 $ $ 14 $ [10]
$ 3 $ $ 2 $ $ 1 $ - $ 23 $ $ 8 $ $ 2 $ - [10]
$ 4 $ $ 2 $ $ 1 $ 2 $ 24 $ $ 8 $ $ 5 $ $ 46 $ [10]
$ 5 $ $ 3 $ $ 1 $ - $ 25 $ $ 8 $ $ 31 $ - [10]
$ 6 $ $ 4 $ $ 0 $ 1 $ 26 $ $ 8 $ $ 49 $ $ 161 $ [10]
$ 7 $ $ 3 $ $ 1 $ - $ 27 $ $ 8 $ $ 140 $ - [10]
$ 8 $ $ 4 $ $ 0 $ 1 $ 28 $ $ 10 $ $ 0 $ $ 1 $ [10]
$ 9 $ $ 4 $ $ 1 $ - $ 29 $ $ 11 $ $ 1 $ - [10]
$ 10 $ $ 4 $ $ 3 $ 5 $ 30 $ $ 12 $ $ 0 $ $ 1 $
$ 11 $ $ 4 $ $ 2 $ - $ 31 $ $ 10 $ $ 5 $ -
$ 12 $ $ 6 $ $ 0 $ 1 $ 32 $ $ 10 $ $ 2 $ $ 106 $ [10]
$ 13 $ $ 5 $ $ 2 $ - [10] $ 33 $ $ 10 $ $ 76 $ - [10]
$ 14 $ $ 6 $ $ 0 $ 3 [10] $ 34 $ $ 10 $ $ 115 $ $ 851 $
$ 15 $ $ 6 $ $ 2 $ - [10] $ 35 $ $ 10 $ $ 595 $ -
$ 16 $ $ 6 $ $ 1 $ 5 [10] $ 36 $ $ 11 $ $ 1 $ $ 0 $
$ 17 $ $ 7 $ $ 1 $ - [10] $ 37 $ $ 11 $ $ 17 $ -
$ 18 $ $ 6 $ $ 16 $ 36 [10] $ 38 $ $ 12 $ $ 0 $ $ 22 $
$ 19 $ $ 7 $ $ 4 $ - [10] $ 39 $ $ 11 $ $ 276 $ -
$ 20 $ $ 8 $ $ 0 $ 2 [10] $ 40 $ $ 12 $ $ 0 $ $ 213 $
Table 2.  Weight distributions of $ C(\Gamma_{31}^{(i)}) $ $ (i = 1, \ldots, 5) $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ C(\Gamma_{31}^{(1)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2000988 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111769756 $
$ 10 $ $ 1209 $ $ 16 $ $ 6017193 $ $ 22 $ $ 294597774 $ $ 28 $ $ 47879469 $
$ 11 $ $ 7564 $ $ 17 $ $ 15948384 $ $ 23 $ $ 345959256 $ $ 29 $ $ 14851976 $
$ 12 $ $ 34441 $ $ 18 $ $ 37215066 $ $ 24 $ $ 345825894 $ $ 30 $ $ 2973179 $
$ 13 $ $ 154504 $ $ 19 $ $ 76416984 $ $ 25 $ $ 290407008 $ $ 31 $ $ 288332 $
$ 14 $ $ 593991 $ $ 20 $ $ 137479482 $ $ 26 $ $ 201124125 $
$ C(\Gamma_{31}^{(2)}) $ $ 0 $ $ 1 $ $ 15 $ $ 1990944 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111779800 $
$ 10 $ $ 1209 $ $ 16 $ $ 6043977 $ $ 22 $ $ 294504030 $ $ 28 $ $ 47886165 $
$ 11 $ $ 7192 $ $ 17 $ $ 15966240 $ $ 23 $ $ 345974880 $ $ 29 $ $ 14849000 $
$ 12 $ $ 35185 $ $ 18 $ $ 37152570 $ $ 24 $ $ 345888390 $ $ 30 $ $ 2972435 $
$ 13 $ $ 157480 $ $ 19 $ $ 76401360 $ $ 25 $ $ 290389152 $ $ 31 $ $ 288704 $
$ 14 $ $ 587295 $ $ 20 $ $ 137573226 $ $ 26 $ $ 201097341 $
$ C(\Gamma_{31}^{(3)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004336 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111766408 $
$ 10 $ $ 1209 $ $ 16 $ $ 6008265 $ $ 22 $ $ 294629022 $ $ 28 $ $ 47877237 $
$ 11 $ $ 7688 $ $ 17 $ $ 15942432 $ $ 23 $ $ 345954048 $ $ 29 $ $ 14852968 $
$ 12 $ $ 34193 $ $ 18 $ $ 37235898 $ $ 24 $ $ 345805062 $ $ 30 $ $ 2973427 $
$ 13 $ $ 153512 $ $ 19 $ $ 76422192 $ $ 25 $ $ 290412960 $ $ 31 $ $ 288208 $
$ 14 $ $ 596223 $ $ 20 $ $ 137448234 $ $ 26 $ $ 201133053 $
$ C(\Gamma_{31}^{(4)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2007374 $ $ 21 $ $ 216042968 $ $ 27 $ $ 111761262 $
$ 10 $ $ 1395 $ $ 16 $ $ 6022649 $ $ 22 $ $ 294539618 $ $ 28 $ $ 47920265 $
$ 11 $ $ 6758 $ $ 17 $ $ 15937968 $ $ 23 $ $ 345831660 $ $ 29 $ $ 14845156 $
$ 12 $ $ 35557 $ $ 18 $ $ 37226350 $ $ 24 $ $ 345942454 $ $ 30 $ $ 2966421 $
$ 13 $ $ 155620 $ $ 19 $ $ 76386604 $ $ 25 $ $ 290475952 $ $ 31 $ $ 290502 $
$ 14 $ $ 587481 $ $ 20 $ $ 137474274 $ $ 26 $ $ 201025359 $
$ C(\Gamma_{31}^{(5)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004584 $ $ 21 $ $ 216058592 $ $ 27 $ $ 111758472 $
$ 10 $ $ 1333 $ $ 16 $ $ 6030089 $ $ 22 $ $ 294526598 $ $ 28 $ $ 47920885 $
$ 11 $ $ 6696 $ $ 17 $ $ 15945408 $ $ 23 $ $ 345818640 $ $ 29 $ $ 14845776 $
$ 12 $ $ 36177 $ $ 18 $ $ 37213330 $ $ 24 $ $ 345949894 $ $ 30 $ $ 2966359 $
$ 13 $ $ 156240 $ $ 19 $ $ 76373584 $ $ 25 $ $ 290483392 $ $ 31 $ $ 290440 $
$ 14 $ $ 584691 $ $ 20 $ $ 137489898 $ $ 26 $ $ 201022569 $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ C(\Gamma_{31}^{(1)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2000988 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111769756 $
$ 10 $ $ 1209 $ $ 16 $ $ 6017193 $ $ 22 $ $ 294597774 $ $ 28 $ $ 47879469 $
$ 11 $ $ 7564 $ $ 17 $ $ 15948384 $ $ 23 $ $ 345959256 $ $ 29 $ $ 14851976 $
$ 12 $ $ 34441 $ $ 18 $ $ 37215066 $ $ 24 $ $ 345825894 $ $ 30 $ $ 2973179 $
$ 13 $ $ 154504 $ $ 19 $ $ 76416984 $ $ 25 $ $ 290407008 $ $ 31 $ $ 288332 $
$ 14 $ $ 593991 $ $ 20 $ $ 137479482 $ $ 26 $ $ 201124125 $
$ C(\Gamma_{31}^{(2)}) $ $ 0 $ $ 1 $ $ 15 $ $ 1990944 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111779800 $
$ 10 $ $ 1209 $ $ 16 $ $ 6043977 $ $ 22 $ $ 294504030 $ $ 28 $ $ 47886165 $
$ 11 $ $ 7192 $ $ 17 $ $ 15966240 $ $ 23 $ $ 345974880 $ $ 29 $ $ 14849000 $
$ 12 $ $ 35185 $ $ 18 $ $ 37152570 $ $ 24 $ $ 345888390 $ $ 30 $ $ 2972435 $
$ 13 $ $ 157480 $ $ 19 $ $ 76401360 $ $ 25 $ $ 290389152 $ $ 31 $ $ 288704 $
$ 14 $ $ 587295 $ $ 20 $ $ 137573226 $ $ 26 $ $ 201097341 $
$ C(\Gamma_{31}^{(3)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004336 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111766408 $
$ 10 $ $ 1209 $ $ 16 $ $ 6008265 $ $ 22 $ $ 294629022 $ $ 28 $ $ 47877237 $
$ 11 $ $ 7688 $ $ 17 $ $ 15942432 $ $ 23 $ $ 345954048 $ $ 29 $ $ 14852968 $
$ 12 $ $ 34193 $ $ 18 $ $ 37235898 $ $ 24 $ $ 345805062 $ $ 30 $ $ 2973427 $
$ 13 $ $ 153512 $ $ 19 $ $ 76422192 $ $ 25 $ $ 290412960 $ $ 31 $ $ 288208 $
$ 14 $ $ 596223 $ $ 20 $ $ 137448234 $ $ 26 $ $ 201133053 $
$ C(\Gamma_{31}^{(4)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2007374 $ $ 21 $ $ 216042968 $ $ 27 $ $ 111761262 $
$ 10 $ $ 1395 $ $ 16 $ $ 6022649 $ $ 22 $ $ 294539618 $ $ 28 $ $ 47920265 $
$ 11 $ $ 6758 $ $ 17 $ $ 15937968 $ $ 23 $ $ 345831660 $ $ 29 $ $ 14845156 $
$ 12 $ $ 35557 $ $ 18 $ $ 37226350 $ $ 24 $ $ 345942454 $ $ 30 $ $ 2966421 $
$ 13 $ $ 155620 $ $ 19 $ $ 76386604 $ $ 25 $ $ 290475952 $ $ 31 $ $ 290502 $
$ 14 $ $ 587481 $ $ 20 $ $ 137474274 $ $ 26 $ $ 201025359 $
$ C(\Gamma_{31}^{(5)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004584 $ $ 21 $ $ 216058592 $ $ 27 $ $ 111758472 $
$ 10 $ $ 1333 $ $ 16 $ $ 6030089 $ $ 22 $ $ 294526598 $ $ 28 $ $ 47920885 $
$ 11 $ $ 6696 $ $ 17 $ $ 15945408 $ $ 23 $ $ 345818640 $ $ 29 $ $ 14845776 $
$ 12 $ $ 36177 $ $ 18 $ $ 37213330 $ $ 24 $ $ 345949894 $ $ 30 $ $ 2966359 $
$ 13 $ $ 156240 $ $ 19 $ $ 76373584 $ $ 25 $ $ 290483392 $ $ 31 $ $ 290440 $
$ 14 $ $ 584691 $ $ 20 $ $ 137489898 $ $ 26 $ $ 201022569 $
Table 3.  Bordered circulant graph codes
$ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref.
- - - - $ 21 $ $ 6 $ $ 34 $
$ 2 $ $ 2 $ $ 1 $ [6] $ 22 $ $ 8 $ $ 3 $ [6]
$ 3 $ $ 2 $ $ 1 $ [6] $ 23 $ $ 7 $ $ 20 $
$ 4 $ $ 2 $ $ 1 $ $ 24 $ $ 8 $ $ 11 $
$ 5 $ $ 2 $ $ 2 $ $ 25 $ $ 8 $ $ 18 $
$ 6 $ $ 4 $ $ 1 $ [6] $ 26 $ $ 8 $ $ 14 $
$ 7 $ $ 3 $ $ 1 $ $ 27 $ $ 8 $ $ 70 $
$ 8 $ $ 4 $ $ 1 $ [6] $ 28 $ $ 8 $ $ 102 $
$ 9 $ $ 4 $ $ 1 $ [6] $ 29 $ $ 9 $ $ 1 $
$ 10 $ $ 4 $ $ 1 $ $ 30 $ $ 12 $ $ 1 $
$ 11 $ $ 4 $ $ 3 $ $ 31 $ $ 10 $ $ 1 $
$ 12 $ $ 4 $ $ 1 $ $ 32 $ $ 10 $ $ 41 $
$ 13 $ $ 5 $ $ 1 $ $ 33 $ $ 10 $ $ 31 $
$ 14 $ $ 6 $ $ 2 $ [6] $ 34 $ $ 10 $ $ 368 $
$ 15 $ $ 6 $ $ 1 $ [6] $ 35 $ $ 10 $ $ 381 $
$ 16 $ $ 6 $ $ 3 $ $ 36 $ $ 10 $ $ 249 $
$ 17 $ $ 6 $ $ 4 $ $ 37 $ $ 11 $ $ 1 $
$ 18 $ $ 8 $ $ 1 $ [6] $ 38 $ $ 12 $ $ 4 $
$ 19 $ $ 6 $ $ 25 $ $ 39 $ $ 11 $ $ 22 $
$ 20 $ $ 8 $ $ 2 $ [6] $ 40 $ $ 12 $ $ 27 $
$ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref.
- - - - $ 21 $ $ 6 $ $ 34 $
$ 2 $ $ 2 $ $ 1 $ [6] $ 22 $ $ 8 $ $ 3 $ [6]
$ 3 $ $ 2 $ $ 1 $ [6] $ 23 $ $ 7 $ $ 20 $
$ 4 $ $ 2 $ $ 1 $ $ 24 $ $ 8 $ $ 11 $
$ 5 $ $ 2 $ $ 2 $ $ 25 $ $ 8 $ $ 18 $
$ 6 $ $ 4 $ $ 1 $ [6] $ 26 $ $ 8 $ $ 14 $
$ 7 $ $ 3 $ $ 1 $ $ 27 $ $ 8 $ $ 70 $
$ 8 $ $ 4 $ $ 1 $ [6] $ 28 $ $ 8 $ $ 102 $
$ 9 $ $ 4 $ $ 1 $ [6] $ 29 $ $ 9 $ $ 1 $
$ 10 $ $ 4 $ $ 1 $ $ 30 $ $ 12 $ $ 1 $
$ 11 $ $ 4 $ $ 3 $ $ 31 $ $ 10 $ $ 1 $
$ 12 $ $ 4 $ $ 1 $ $ 32 $ $ 10 $ $ 41 $
$ 13 $ $ 5 $ $ 1 $ $ 33 $ $ 10 $ $ 31 $
$ 14 $ $ 6 $ $ 2 $ [6] $ 34 $ $ 10 $ $ 368 $
$ 15 $ $ 6 $ $ 1 $ [6] $ 35 $ $ 10 $ $ 381 $
$ 16 $ $ 6 $ $ 3 $ $ 36 $ $ 10 $ $ 249 $
$ 17 $ $ 6 $ $ 4 $ $ 37 $ $ 11 $ $ 1 $
$ 18 $ $ 8 $ $ 1 $ [6] $ 38 $ $ 12 $ $ 4 $
$ 19 $ $ 6 $ $ 25 $ $ 39 $ $ 11 $ $ 22 $
$ 20 $ $ 8 $ $ 2 $ [6] $ 40 $ $ 12 $ $ 27 $
Table 4.  Weight distributions of $ \overline{C}(\Gamma_{n-1}) $ $ (n = 29, 30, 31, 37) $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ \overline{C}(\Gamma_{28}) $ $ 0 $ $ 1 $ $ 14 $ $ 960696 $ $ 20 $ $ 70176246 $ $ 26 $ $ 13926402 $
$ 9 $ $ 196 $ $ 15 $ $ 1404096 $ $ 21 $ $ 80787000 $ $ 27 $ $ 7162400 $
$ 10 $ $ 4130 $ $ 16 $ $ 6819393 $ $ 22 $ $ 90249720 $ $ 28 $ $ 879975 $
$ 11 $ $ 4704 $ $ 17 $ $ 9807336 $ $ 23 $ $ 88070976 $ $ 29 $ $ 169548 $
$ 12 $ $ 69027 $ $ 18 $ $ 29368108 $ $ 24 $ $ 55981758 $
$ 13 $ $ 127932 $ $ 19 $ $ 37819264 $ $ 25 $ $ 43082004 $
$ \overline{C}(\Gamma_{29}) $ $ 0 $ $ 1 $ $ 16 $ $ 12038625 $ $ 22 $ $ 341403660 $ $ 28 $ $ 18581895 $
$ 12 $ $ 118755 $ $ 18 $ $ 61752600 $ $ 24 $ $ 312800670 $ $ 30 $ $ 378018 $
$ 14 $ $ 1151010 $ $ 20 $ $ 195945750 $ $ 26 $ $ 129570840 $
$ \overline{C}(\Gamma_{30}) $ $ 0 $ $ 1 $ $ 15 $ $ 1296630 $ $ 21 $ $ 195080760 $ $ 27 $ $ 129747510 $
$ 10 $ $ 1931 $ $ 16 $ $ 7888953 $ $ 22 $ $ 310437330 $ $ 28 $ $ 38102265 $
$ 11 $ $ 3534 $ $ 17 $ $ 11648880 $ $ 23 $ $ 342154620 $ $ 29 $ $ 18540660 $
$ 12 $ $ 51285 $ $ 18 $ $ 45631390 $ $ 24 $ $ 334681590 $ $ 30 $ $ 2109261 $
$ 13 $ $ 85620 $ $ 19 $ $ 62449660 $ $ 25 $ $ 312351600 $ $ 31 $ $ 382350 $
$ 14 $ $ 830385 $ $ 20 $ $ 156683394 $ $ 26 $ $ 177324039 $
$ \overline{C}(\Gamma_{36}) $ $ 0 $ $ 1 $ $ 17 $ $ 9143640 $ $ 24 $ $ 8309464632 $ $ 31 $ $ 11671999680 $
$ 11 $ $ 360 $ $ 18 $ $ 67292720 $ $ 25 $ $ 10288765008 $ $ 32 $ $ 4976806725 $
$ 12 $ $ 11520 $ $ 19 $ $ 102308360 $ $ 26 $ $ 16810527456 $ $ 33 $ $ 3176508888 $
$ 13 $ $ 19068 $ $ 20 $ $ 516207384 $ $ 27 $ $ 18804288888 $ $ 34 $ $ 730497264 $
$ 14 $ $ 318384 $ $ 21 $ $ 741731364 $ $ 28 $ $ 20519937680 $ $ 35 $ $ 305859096 $
$ 15 $ $ 533376 $ $ 22 $ $ 2581317216 $ $ 29 $ $ 20147052420 $ $ 36 $ $ 28393304 $
$ 16 $ $ 5746818 $ $ 23 $ $ 3466908864 $ $ 30 $ $ 14172955632 $ $ 37 $ $ 4357724 $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ \overline{C}(\Gamma_{28}) $ $ 0 $ $ 1 $ $ 14 $ $ 960696 $ $ 20 $ $ 70176246 $ $ 26 $ $ 13926402 $
$ 9 $ $ 196 $ $ 15 $ $ 1404096 $ $ 21 $ $ 80787000 $ $ 27 $ $ 7162400 $
$ 10 $ $ 4130 $ $ 16 $ $ 6819393 $ $ 22 $ $ 90249720 $ $ 28 $ $ 879975 $
$ 11 $ $ 4704 $ $ 17 $ $ 9807336 $ $ 23 $ $ 88070976 $ $ 29 $ $ 169548 $
$ 12 $ $ 69027 $ $ 18 $ $ 29368108 $ $ 24 $ $ 55981758 $
$ 13 $ $ 127932 $ $ 19 $ $ 37819264 $ $ 25 $ $ 43082004 $
$ \overline{C}(\Gamma_{29}) $ $ 0 $ $ 1 $ $ 16 $ $ 12038625 $ $ 22 $ $ 341403660 $ $ 28 $ $ 18581895 $
$ 12 $ $ 118755 $ $ 18 $ $ 61752600 $ $ 24 $ $ 312800670 $ $ 30 $ $ 378018 $
$ 14 $ $ 1151010 $ $ 20 $ $ 195945750 $ $ 26 $ $ 129570840 $
$ \overline{C}(\Gamma_{30}) $ $ 0 $ $ 1 $ $ 15 $ $ 1296630 $ $ 21 $ $ 195080760 $ $ 27 $ $ 129747510 $
$ 10 $ $ 1931 $ $ 16 $ $ 7888953 $ $ 22 $ $ 310437330 $ $ 28 $ $ 38102265 $
$ 11 $ $ 3534 $ $ 17 $ $ 11648880 $ $ 23 $ $ 342154620 $ $ 29 $ $ 18540660 $
$ 12 $ $ 51285 $ $ 18 $ $ 45631390 $ $ 24 $ $ 334681590 $ $ 30 $ $ 2109261 $
$ 13 $ $ 85620 $ $ 19 $ $ 62449660 $ $ 25 $ $ 312351600 $ $ 31 $ $ 382350 $
$ 14 $ $ 830385 $ $ 20 $ $ 156683394 $ $ 26 $ $ 177324039 $
$ \overline{C}(\Gamma_{36}) $ $ 0 $ $ 1 $ $ 17 $ $ 9143640 $ $ 24 $ $ 8309464632 $ $ 31 $ $ 11671999680 $
$ 11 $ $ 360 $ $ 18 $ $ 67292720 $ $ 25 $ $ 10288765008 $ $ 32 $ $ 4976806725 $
$ 12 $ $ 11520 $ $ 19 $ $ 102308360 $ $ 26 $ $ 16810527456 $ $ 33 $ $ 3176508888 $
$ 13 $ $ 19068 $ $ 20 $ $ 516207384 $ $ 27 $ $ 18804288888 $ $ 34 $ $ 730497264 $
$ 14 $ $ 318384 $ $ 21 $ $ 741731364 $ $ 28 $ $ 20519937680 $ $ 35 $ $ 305859096 $
$ 15 $ $ 533376 $ $ 22 $ $ 2581317216 $ $ 29 $ $ 20147052420 $ $ 36 $ $ 28393304 $
$ 16 $ $ 5746818 $ $ 23 $ $ 3466908864 $ $ 30 $ $ 14172955632 $ $ 37 $ $ 4357724 $
[1]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[2]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[3]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[4]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[5]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[6]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[7]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[8]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[9]

W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57

[10]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[11]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[12]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[13]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

[14]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[15]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[16]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[17]

Jianying Fang. 5-SEEDs from the lifted Golay code of length 24 over Z4. Advances in Mathematics of Communications, 2017, 11 (1) : 259-266. doi: 10.3934/amc.2017017

[18]

Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193

[19]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[20]

Evangeline P. Bautista, Philippe Gaborit, Jon-Lark Kim, Judy L. Walker. s-extremal additive $\mathbb F_4$ codes. Advances in Mathematics of Communications, 2007, 1 (1) : 111-130. doi: 10.3934/amc.2007.1.111

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (145)
  • HTML views (433)
  • Cited by (0)

Other articles
by authors

[Back to Top]