May  2019, 13(2): 213-220. doi: 10.3934/amc.2019014

Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan

Received  January 2017 Published  February 2019

In this paper, we consider additive circulant graph codes which are self-dual additive $ \mathbb{F}_4 $-codes. We classify all additive circulant graph codes of length $ n = 30, 31 $ and $ 34 \le n \le 40 $ having the largest minimum weight. We also classify bordered circulant graph codes of lengths up to 40 having the largest minimum weight.

Citation: Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014
References:
[1]

B. Alspach and T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25 (1979), 97-108.  doi: 10.1016/0012-365X(79)90011-6.  Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[3]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[4]

S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math., 339 (2016), 84-94.  doi: 10.1016/j.disc.2015.07.002.  Google Scholar

[5]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to $12$, J. Combin. Theory Ser. A, 113 (2006), 1351-1367.  doi: 10.1016/j.jcta.2005.12.004.  Google Scholar

[6]

L. E. Danielsen and M. G. Parker, Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130.  doi: 10.1007/s10623-010-9469-6.  Google Scholar

[7]

B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combinatorial Theory, 9 (1970), 297-307.  doi: 10.1016/S0021-9800(70)80068-0.  Google Scholar

[8]

M. Grassl and M. Harada, New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs, Discrete Math., 340 (2017), 399-403.  doi: 10.1016/j.disc.2016.08.023.  Google Scholar

[9]

F. J. MacWilliamsA. M. OdlyzkoN. J. A. Sloane and H. N. Ward, Self-dual codes over $GF(4)$, J. Combin. Theory Ser. A, 25 (1978), 288-318.  doi: 10.1016/0097-3165(78)90021-3.  Google Scholar

[10]

Z. Varbanov, Additive circulant graph codes over GF(4), Math. Maced., 6 (2008), 73-79.   Google Scholar

[11]

Z. Varbanov, T. Todorov and M. Hristova, A method for constructing DNA codes from additive self-dual codes over GF(4), ROMAI J., 10 (2014), 203-211.   Google Scholar

show all references

References:
[1]

B. Alspach and T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25 (1979), 97-108.  doi: 10.1016/0012-365X(79)90011-6.  Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[3]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.  Google Scholar

[4]

S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math., 339 (2016), 84-94.  doi: 10.1016/j.disc.2015.07.002.  Google Scholar

[5]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to $12$, J. Combin. Theory Ser. A, 113 (2006), 1351-1367.  doi: 10.1016/j.jcta.2005.12.004.  Google Scholar

[6]

L. E. Danielsen and M. G. Parker, Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130.  doi: 10.1007/s10623-010-9469-6.  Google Scholar

[7]

B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combinatorial Theory, 9 (1970), 297-307.  doi: 10.1016/S0021-9800(70)80068-0.  Google Scholar

[8]

M. Grassl and M. Harada, New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs, Discrete Math., 340 (2017), 399-403.  doi: 10.1016/j.disc.2016.08.023.  Google Scholar

[9]

F. J. MacWilliamsA. M. OdlyzkoN. J. A. Sloane and H. N. Ward, Self-dual codes over $GF(4)$, J. Combin. Theory Ser. A, 25 (1978), 288-318.  doi: 10.1016/0097-3165(78)90021-3.  Google Scholar

[10]

Z. Varbanov, Additive circulant graph codes over GF(4), Math. Maced., 6 (2008), 73-79.   Google Scholar

[11]

Z. Varbanov, T. Todorov and M. Hristova, A method for constructing DNA codes from additive self-dual codes over GF(4), ROMAI J., 10 (2014), 203-211.   Google Scholar

Table 1.  Additive circulant graph codes
$ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref.
$ 1 $ $ 1 $ $ 1 $ - $ 21 $ $ 7 $ $ 11 $ - [10]
$ 2 $ $ 2 $ $ 0 $ 1 $ 22 $ $ 8 $ $ 0 $ $ 14 $ [10]
$ 3 $ $ 2 $ $ 1 $ - $ 23 $ $ 8 $ $ 2 $ - [10]
$ 4 $ $ 2 $ $ 1 $ 2 $ 24 $ $ 8 $ $ 5 $ $ 46 $ [10]
$ 5 $ $ 3 $ $ 1 $ - $ 25 $ $ 8 $ $ 31 $ - [10]
$ 6 $ $ 4 $ $ 0 $ 1 $ 26 $ $ 8 $ $ 49 $ $ 161 $ [10]
$ 7 $ $ 3 $ $ 1 $ - $ 27 $ $ 8 $ $ 140 $ - [10]
$ 8 $ $ 4 $ $ 0 $ 1 $ 28 $ $ 10 $ $ 0 $ $ 1 $ [10]
$ 9 $ $ 4 $ $ 1 $ - $ 29 $ $ 11 $ $ 1 $ - [10]
$ 10 $ $ 4 $ $ 3 $ 5 $ 30 $ $ 12 $ $ 0 $ $ 1 $
$ 11 $ $ 4 $ $ 2 $ - $ 31 $ $ 10 $ $ 5 $ -
$ 12 $ $ 6 $ $ 0 $ 1 $ 32 $ $ 10 $ $ 2 $ $ 106 $ [10]
$ 13 $ $ 5 $ $ 2 $ - [10] $ 33 $ $ 10 $ $ 76 $ - [10]
$ 14 $ $ 6 $ $ 0 $ 3 [10] $ 34 $ $ 10 $ $ 115 $ $ 851 $
$ 15 $ $ 6 $ $ 2 $ - [10] $ 35 $ $ 10 $ $ 595 $ -
$ 16 $ $ 6 $ $ 1 $ 5 [10] $ 36 $ $ 11 $ $ 1 $ $ 0 $
$ 17 $ $ 7 $ $ 1 $ - [10] $ 37 $ $ 11 $ $ 17 $ -
$ 18 $ $ 6 $ $ 16 $ 36 [10] $ 38 $ $ 12 $ $ 0 $ $ 22 $
$ 19 $ $ 7 $ $ 4 $ - [10] $ 39 $ $ 11 $ $ 276 $ -
$ 20 $ $ 8 $ $ 0 $ 2 [10] $ 40 $ $ 12 $ $ 0 $ $ 213 $
$ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm A}(n) $ $ {\rm num}^{\rm A}_{\rm I}(n) $ $ {\rm num}^{\rm A}_{\rm II}(n) $ Ref.
$ 1 $ $ 1 $ $ 1 $ - $ 21 $ $ 7 $ $ 11 $ - [10]
$ 2 $ $ 2 $ $ 0 $ 1 $ 22 $ $ 8 $ $ 0 $ $ 14 $ [10]
$ 3 $ $ 2 $ $ 1 $ - $ 23 $ $ 8 $ $ 2 $ - [10]
$ 4 $ $ 2 $ $ 1 $ 2 $ 24 $ $ 8 $ $ 5 $ $ 46 $ [10]
$ 5 $ $ 3 $ $ 1 $ - $ 25 $ $ 8 $ $ 31 $ - [10]
$ 6 $ $ 4 $ $ 0 $ 1 $ 26 $ $ 8 $ $ 49 $ $ 161 $ [10]
$ 7 $ $ 3 $ $ 1 $ - $ 27 $ $ 8 $ $ 140 $ - [10]
$ 8 $ $ 4 $ $ 0 $ 1 $ 28 $ $ 10 $ $ 0 $ $ 1 $ [10]
$ 9 $ $ 4 $ $ 1 $ - $ 29 $ $ 11 $ $ 1 $ - [10]
$ 10 $ $ 4 $ $ 3 $ 5 $ 30 $ $ 12 $ $ 0 $ $ 1 $
$ 11 $ $ 4 $ $ 2 $ - $ 31 $ $ 10 $ $ 5 $ -
$ 12 $ $ 6 $ $ 0 $ 1 $ 32 $ $ 10 $ $ 2 $ $ 106 $ [10]
$ 13 $ $ 5 $ $ 2 $ - [10] $ 33 $ $ 10 $ $ 76 $ - [10]
$ 14 $ $ 6 $ $ 0 $ 3 [10] $ 34 $ $ 10 $ $ 115 $ $ 851 $
$ 15 $ $ 6 $ $ 2 $ - [10] $ 35 $ $ 10 $ $ 595 $ -
$ 16 $ $ 6 $ $ 1 $ 5 [10] $ 36 $ $ 11 $ $ 1 $ $ 0 $
$ 17 $ $ 7 $ $ 1 $ - [10] $ 37 $ $ 11 $ $ 17 $ -
$ 18 $ $ 6 $ $ 16 $ 36 [10] $ 38 $ $ 12 $ $ 0 $ $ 22 $
$ 19 $ $ 7 $ $ 4 $ - [10] $ 39 $ $ 11 $ $ 276 $ -
$ 20 $ $ 8 $ $ 0 $ 2 [10] $ 40 $ $ 12 $ $ 0 $ $ 213 $
Table 2.  Weight distributions of $ C(\Gamma_{31}^{(i)}) $ $ (i = 1, \ldots, 5) $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ C(\Gamma_{31}^{(1)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2000988 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111769756 $
$ 10 $ $ 1209 $ $ 16 $ $ 6017193 $ $ 22 $ $ 294597774 $ $ 28 $ $ 47879469 $
$ 11 $ $ 7564 $ $ 17 $ $ 15948384 $ $ 23 $ $ 345959256 $ $ 29 $ $ 14851976 $
$ 12 $ $ 34441 $ $ 18 $ $ 37215066 $ $ 24 $ $ 345825894 $ $ 30 $ $ 2973179 $
$ 13 $ $ 154504 $ $ 19 $ $ 76416984 $ $ 25 $ $ 290407008 $ $ 31 $ $ 288332 $
$ 14 $ $ 593991 $ $ 20 $ $ 137479482 $ $ 26 $ $ 201124125 $
$ C(\Gamma_{31}^{(2)}) $ $ 0 $ $ 1 $ $ 15 $ $ 1990944 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111779800 $
$ 10 $ $ 1209 $ $ 16 $ $ 6043977 $ $ 22 $ $ 294504030 $ $ 28 $ $ 47886165 $
$ 11 $ $ 7192 $ $ 17 $ $ 15966240 $ $ 23 $ $ 345974880 $ $ 29 $ $ 14849000 $
$ 12 $ $ 35185 $ $ 18 $ $ 37152570 $ $ 24 $ $ 345888390 $ $ 30 $ $ 2972435 $
$ 13 $ $ 157480 $ $ 19 $ $ 76401360 $ $ 25 $ $ 290389152 $ $ 31 $ $ 288704 $
$ 14 $ $ 587295 $ $ 20 $ $ 137573226 $ $ 26 $ $ 201097341 $
$ C(\Gamma_{31}^{(3)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004336 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111766408 $
$ 10 $ $ 1209 $ $ 16 $ $ 6008265 $ $ 22 $ $ 294629022 $ $ 28 $ $ 47877237 $
$ 11 $ $ 7688 $ $ 17 $ $ 15942432 $ $ 23 $ $ 345954048 $ $ 29 $ $ 14852968 $
$ 12 $ $ 34193 $ $ 18 $ $ 37235898 $ $ 24 $ $ 345805062 $ $ 30 $ $ 2973427 $
$ 13 $ $ 153512 $ $ 19 $ $ 76422192 $ $ 25 $ $ 290412960 $ $ 31 $ $ 288208 $
$ 14 $ $ 596223 $ $ 20 $ $ 137448234 $ $ 26 $ $ 201133053 $
$ C(\Gamma_{31}^{(4)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2007374 $ $ 21 $ $ 216042968 $ $ 27 $ $ 111761262 $
$ 10 $ $ 1395 $ $ 16 $ $ 6022649 $ $ 22 $ $ 294539618 $ $ 28 $ $ 47920265 $
$ 11 $ $ 6758 $ $ 17 $ $ 15937968 $ $ 23 $ $ 345831660 $ $ 29 $ $ 14845156 $
$ 12 $ $ 35557 $ $ 18 $ $ 37226350 $ $ 24 $ $ 345942454 $ $ 30 $ $ 2966421 $
$ 13 $ $ 155620 $ $ 19 $ $ 76386604 $ $ 25 $ $ 290475952 $ $ 31 $ $ 290502 $
$ 14 $ $ 587481 $ $ 20 $ $ 137474274 $ $ 26 $ $ 201025359 $
$ C(\Gamma_{31}^{(5)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004584 $ $ 21 $ $ 216058592 $ $ 27 $ $ 111758472 $
$ 10 $ $ 1333 $ $ 16 $ $ 6030089 $ $ 22 $ $ 294526598 $ $ 28 $ $ 47920885 $
$ 11 $ $ 6696 $ $ 17 $ $ 15945408 $ $ 23 $ $ 345818640 $ $ 29 $ $ 14845776 $
$ 12 $ $ 36177 $ $ 18 $ $ 37213330 $ $ 24 $ $ 345949894 $ $ 30 $ $ 2966359 $
$ 13 $ $ 156240 $ $ 19 $ $ 76373584 $ $ 25 $ $ 290483392 $ $ 31 $ $ 290440 $
$ 14 $ $ 584691 $ $ 20 $ $ 137489898 $ $ 26 $ $ 201022569 $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ C(\Gamma_{31}^{(1)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2000988 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111769756 $
$ 10 $ $ 1209 $ $ 16 $ $ 6017193 $ $ 22 $ $ 294597774 $ $ 28 $ $ 47879469 $
$ 11 $ $ 7564 $ $ 17 $ $ 15948384 $ $ 23 $ $ 345959256 $ $ 29 $ $ 14851976 $
$ 12 $ $ 34441 $ $ 18 $ $ 37215066 $ $ 24 $ $ 345825894 $ $ 30 $ $ 2973179 $
$ 13 $ $ 154504 $ $ 19 $ $ 76416984 $ $ 25 $ $ 290407008 $ $ 31 $ $ 288332 $
$ 14 $ $ 593991 $ $ 20 $ $ 137479482 $ $ 26 $ $ 201124125 $
$ C(\Gamma_{31}^{(2)}) $ $ 0 $ $ 1 $ $ 15 $ $ 1990944 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111779800 $
$ 10 $ $ 1209 $ $ 16 $ $ 6043977 $ $ 22 $ $ 294504030 $ $ 28 $ $ 47886165 $
$ 11 $ $ 7192 $ $ 17 $ $ 15966240 $ $ 23 $ $ 345974880 $ $ 29 $ $ 14849000 $
$ 12 $ $ 35185 $ $ 18 $ $ 37152570 $ $ 24 $ $ 345888390 $ $ 30 $ $ 2972435 $
$ 13 $ $ 157480 $ $ 19 $ $ 76401360 $ $ 25 $ $ 290389152 $ $ 31 $ $ 288704 $
$ 14 $ $ 587295 $ $ 20 $ $ 137573226 $ $ 26 $ $ 201097341 $
$ C(\Gamma_{31}^{(3)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004336 $ $ 21 $ $ 215937072 $ $ 27 $ $ 111766408 $
$ 10 $ $ 1209 $ $ 16 $ $ 6008265 $ $ 22 $ $ 294629022 $ $ 28 $ $ 47877237 $
$ 11 $ $ 7688 $ $ 17 $ $ 15942432 $ $ 23 $ $ 345954048 $ $ 29 $ $ 14852968 $
$ 12 $ $ 34193 $ $ 18 $ $ 37235898 $ $ 24 $ $ 345805062 $ $ 30 $ $ 2973427 $
$ 13 $ $ 153512 $ $ 19 $ $ 76422192 $ $ 25 $ $ 290412960 $ $ 31 $ $ 288208 $
$ 14 $ $ 596223 $ $ 20 $ $ 137448234 $ $ 26 $ $ 201133053 $
$ C(\Gamma_{31}^{(4)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2007374 $ $ 21 $ $ 216042968 $ $ 27 $ $ 111761262 $
$ 10 $ $ 1395 $ $ 16 $ $ 6022649 $ $ 22 $ $ 294539618 $ $ 28 $ $ 47920265 $
$ 11 $ $ 6758 $ $ 17 $ $ 15937968 $ $ 23 $ $ 345831660 $ $ 29 $ $ 14845156 $
$ 12 $ $ 35557 $ $ 18 $ $ 37226350 $ $ 24 $ $ 345942454 $ $ 30 $ $ 2966421 $
$ 13 $ $ 155620 $ $ 19 $ $ 76386604 $ $ 25 $ $ 290475952 $ $ 31 $ $ 290502 $
$ 14 $ $ 587481 $ $ 20 $ $ 137474274 $ $ 26 $ $ 201025359 $
$ C(\Gamma_{31}^{(5)}) $ $ 0 $ $ 1 $ $ 15 $ $ 2004584 $ $ 21 $ $ 216058592 $ $ 27 $ $ 111758472 $
$ 10 $ $ 1333 $ $ 16 $ $ 6030089 $ $ 22 $ $ 294526598 $ $ 28 $ $ 47920885 $
$ 11 $ $ 6696 $ $ 17 $ $ 15945408 $ $ 23 $ $ 345818640 $ $ 29 $ $ 14845776 $
$ 12 $ $ 36177 $ $ 18 $ $ 37213330 $ $ 24 $ $ 345949894 $ $ 30 $ $ 2966359 $
$ 13 $ $ 156240 $ $ 19 $ $ 76373584 $ $ 25 $ $ 290483392 $ $ 31 $ $ 290440 $
$ 14 $ $ 584691 $ $ 20 $ $ 137489898 $ $ 26 $ $ 201022569 $
Table 3.  Bordered circulant graph codes
$ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref.
- - - - $ 21 $ $ 6 $ $ 34 $
$ 2 $ $ 2 $ $ 1 $ [6] $ 22 $ $ 8 $ $ 3 $ [6]
$ 3 $ $ 2 $ $ 1 $ [6] $ 23 $ $ 7 $ $ 20 $
$ 4 $ $ 2 $ $ 1 $ $ 24 $ $ 8 $ $ 11 $
$ 5 $ $ 2 $ $ 2 $ $ 25 $ $ 8 $ $ 18 $
$ 6 $ $ 4 $ $ 1 $ [6] $ 26 $ $ 8 $ $ 14 $
$ 7 $ $ 3 $ $ 1 $ $ 27 $ $ 8 $ $ 70 $
$ 8 $ $ 4 $ $ 1 $ [6] $ 28 $ $ 8 $ $ 102 $
$ 9 $ $ 4 $ $ 1 $ [6] $ 29 $ $ 9 $ $ 1 $
$ 10 $ $ 4 $ $ 1 $ $ 30 $ $ 12 $ $ 1 $
$ 11 $ $ 4 $ $ 3 $ $ 31 $ $ 10 $ $ 1 $
$ 12 $ $ 4 $ $ 1 $ $ 32 $ $ 10 $ $ 41 $
$ 13 $ $ 5 $ $ 1 $ $ 33 $ $ 10 $ $ 31 $
$ 14 $ $ 6 $ $ 2 $ [6] $ 34 $ $ 10 $ $ 368 $
$ 15 $ $ 6 $ $ 1 $ [6] $ 35 $ $ 10 $ $ 381 $
$ 16 $ $ 6 $ $ 3 $ $ 36 $ $ 10 $ $ 249 $
$ 17 $ $ 6 $ $ 4 $ $ 37 $ $ 11 $ $ 1 $
$ 18 $ $ 8 $ $ 1 $ [6] $ 38 $ $ 12 $ $ 4 $
$ 19 $ $ 6 $ $ 25 $ $ 39 $ $ 11 $ $ 22 $
$ 20 $ $ 8 $ $ 2 $ [6] $ 40 $ $ 12 $ $ 27 $
$ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref. $ n $ $ d_{\rm max}^{\rm B}(n) $ $ {\rm num}^{\rm B}(n) $ Ref.
- - - - $ 21 $ $ 6 $ $ 34 $
$ 2 $ $ 2 $ $ 1 $ [6] $ 22 $ $ 8 $ $ 3 $ [6]
$ 3 $ $ 2 $ $ 1 $ [6] $ 23 $ $ 7 $ $ 20 $
$ 4 $ $ 2 $ $ 1 $ $ 24 $ $ 8 $ $ 11 $
$ 5 $ $ 2 $ $ 2 $ $ 25 $ $ 8 $ $ 18 $
$ 6 $ $ 4 $ $ 1 $ [6] $ 26 $ $ 8 $ $ 14 $
$ 7 $ $ 3 $ $ 1 $ $ 27 $ $ 8 $ $ 70 $
$ 8 $ $ 4 $ $ 1 $ [6] $ 28 $ $ 8 $ $ 102 $
$ 9 $ $ 4 $ $ 1 $ [6] $ 29 $ $ 9 $ $ 1 $
$ 10 $ $ 4 $ $ 1 $ $ 30 $ $ 12 $ $ 1 $
$ 11 $ $ 4 $ $ 3 $ $ 31 $ $ 10 $ $ 1 $
$ 12 $ $ 4 $ $ 1 $ $ 32 $ $ 10 $ $ 41 $
$ 13 $ $ 5 $ $ 1 $ $ 33 $ $ 10 $ $ 31 $
$ 14 $ $ 6 $ $ 2 $ [6] $ 34 $ $ 10 $ $ 368 $
$ 15 $ $ 6 $ $ 1 $ [6] $ 35 $ $ 10 $ $ 381 $
$ 16 $ $ 6 $ $ 3 $ $ 36 $ $ 10 $ $ 249 $
$ 17 $ $ 6 $ $ 4 $ $ 37 $ $ 11 $ $ 1 $
$ 18 $ $ 8 $ $ 1 $ [6] $ 38 $ $ 12 $ $ 4 $
$ 19 $ $ 6 $ $ 25 $ $ 39 $ $ 11 $ $ 22 $
$ 20 $ $ 8 $ $ 2 $ [6] $ 40 $ $ 12 $ $ 27 $
Table 4.  Weight distributions of $ \overline{C}(\Gamma_{n-1}) $ $ (n = 29, 30, 31, 37) $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ \overline{C}(\Gamma_{28}) $ $ 0 $ $ 1 $ $ 14 $ $ 960696 $ $ 20 $ $ 70176246 $ $ 26 $ $ 13926402 $
$ 9 $ $ 196 $ $ 15 $ $ 1404096 $ $ 21 $ $ 80787000 $ $ 27 $ $ 7162400 $
$ 10 $ $ 4130 $ $ 16 $ $ 6819393 $ $ 22 $ $ 90249720 $ $ 28 $ $ 879975 $
$ 11 $ $ 4704 $ $ 17 $ $ 9807336 $ $ 23 $ $ 88070976 $ $ 29 $ $ 169548 $
$ 12 $ $ 69027 $ $ 18 $ $ 29368108 $ $ 24 $ $ 55981758 $
$ 13 $ $ 127932 $ $ 19 $ $ 37819264 $ $ 25 $ $ 43082004 $
$ \overline{C}(\Gamma_{29}) $ $ 0 $ $ 1 $ $ 16 $ $ 12038625 $ $ 22 $ $ 341403660 $ $ 28 $ $ 18581895 $
$ 12 $ $ 118755 $ $ 18 $ $ 61752600 $ $ 24 $ $ 312800670 $ $ 30 $ $ 378018 $
$ 14 $ $ 1151010 $ $ 20 $ $ 195945750 $ $ 26 $ $ 129570840 $
$ \overline{C}(\Gamma_{30}) $ $ 0 $ $ 1 $ $ 15 $ $ 1296630 $ $ 21 $ $ 195080760 $ $ 27 $ $ 129747510 $
$ 10 $ $ 1931 $ $ 16 $ $ 7888953 $ $ 22 $ $ 310437330 $ $ 28 $ $ 38102265 $
$ 11 $ $ 3534 $ $ 17 $ $ 11648880 $ $ 23 $ $ 342154620 $ $ 29 $ $ 18540660 $
$ 12 $ $ 51285 $ $ 18 $ $ 45631390 $ $ 24 $ $ 334681590 $ $ 30 $ $ 2109261 $
$ 13 $ $ 85620 $ $ 19 $ $ 62449660 $ $ 25 $ $ 312351600 $ $ 31 $ $ 382350 $
$ 14 $ $ 830385 $ $ 20 $ $ 156683394 $ $ 26 $ $ 177324039 $
$ \overline{C}(\Gamma_{36}) $ $ 0 $ $ 1 $ $ 17 $ $ 9143640 $ $ 24 $ $ 8309464632 $ $ 31 $ $ 11671999680 $
$ 11 $ $ 360 $ $ 18 $ $ 67292720 $ $ 25 $ $ 10288765008 $ $ 32 $ $ 4976806725 $
$ 12 $ $ 11520 $ $ 19 $ $ 102308360 $ $ 26 $ $ 16810527456 $ $ 33 $ $ 3176508888 $
$ 13 $ $ 19068 $ $ 20 $ $ 516207384 $ $ 27 $ $ 18804288888 $ $ 34 $ $ 730497264 $
$ 14 $ $ 318384 $ $ 21 $ $ 741731364 $ $ 28 $ $ 20519937680 $ $ 35 $ $ 305859096 $
$ 15 $ $ 533376 $ $ 22 $ $ 2581317216 $ $ 29 $ $ 20147052420 $ $ 36 $ $ 28393304 $
$ 16 $ $ 5746818 $ $ 23 $ $ 3466908864 $ $ 30 $ $ 14172955632 $ $ 37 $ $ 4357724 $
Code $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $ $ i $ $ A_i $
$ \overline{C}(\Gamma_{28}) $ $ 0 $ $ 1 $ $ 14 $ $ 960696 $ $ 20 $ $ 70176246 $ $ 26 $ $ 13926402 $
$ 9 $ $ 196 $ $ 15 $ $ 1404096 $ $ 21 $ $ 80787000 $ $ 27 $ $ 7162400 $
$ 10 $ $ 4130 $ $ 16 $ $ 6819393 $ $ 22 $ $ 90249720 $ $ 28 $ $ 879975 $
$ 11 $ $ 4704 $ $ 17 $ $ 9807336 $ $ 23 $ $ 88070976 $ $ 29 $ $ 169548 $
$ 12 $ $ 69027 $ $ 18 $ $ 29368108 $ $ 24 $ $ 55981758 $
$ 13 $ $ 127932 $ $ 19 $ $ 37819264 $ $ 25 $ $ 43082004 $
$ \overline{C}(\Gamma_{29}) $ $ 0 $ $ 1 $ $ 16 $ $ 12038625 $ $ 22 $ $ 341403660 $ $ 28 $ $ 18581895 $
$ 12 $ $ 118755 $ $ 18 $ $ 61752600 $ $ 24 $ $ 312800670 $ $ 30 $ $ 378018 $
$ 14 $ $ 1151010 $ $ 20 $ $ 195945750 $ $ 26 $ $ 129570840 $
$ \overline{C}(\Gamma_{30}) $ $ 0 $ $ 1 $ $ 15 $ $ 1296630 $ $ 21 $ $ 195080760 $ $ 27 $ $ 129747510 $
$ 10 $ $ 1931 $ $ 16 $ $ 7888953 $ $ 22 $ $ 310437330 $ $ 28 $ $ 38102265 $
$ 11 $ $ 3534 $ $ 17 $ $ 11648880 $ $ 23 $ $ 342154620 $ $ 29 $ $ 18540660 $
$ 12 $ $ 51285 $ $ 18 $ $ 45631390 $ $ 24 $ $ 334681590 $ $ 30 $ $ 2109261 $
$ 13 $ $ 85620 $ $ 19 $ $ 62449660 $ $ 25 $ $ 312351600 $ $ 31 $ $ 382350 $
$ 14 $ $ 830385 $ $ 20 $ $ 156683394 $ $ 26 $ $ 177324039 $
$ \overline{C}(\Gamma_{36}) $ $ 0 $ $ 1 $ $ 17 $ $ 9143640 $ $ 24 $ $ 8309464632 $ $ 31 $ $ 11671999680 $
$ 11 $ $ 360 $ $ 18 $ $ 67292720 $ $ 25 $ $ 10288765008 $ $ 32 $ $ 4976806725 $
$ 12 $ $ 11520 $ $ 19 $ $ 102308360 $ $ 26 $ $ 16810527456 $ $ 33 $ $ 3176508888 $
$ 13 $ $ 19068 $ $ 20 $ $ 516207384 $ $ 27 $ $ 18804288888 $ $ 34 $ $ 730497264 $
$ 14 $ $ 318384 $ $ 21 $ $ 741731364 $ $ 28 $ $ 20519937680 $ $ 35 $ $ 305859096 $
$ 15 $ $ 533376 $ $ 22 $ $ 2581317216 $ $ 29 $ $ 20147052420 $ $ 36 $ $ 28393304 $
$ 16 $ $ 5746818 $ $ 23 $ $ 3466908864 $ $ 30 $ $ 14172955632 $ $ 37 $ $ 4357724 $
[1]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[4]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[5]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[10]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (260)
  • HTML views (514)
  • Cited by (0)

Other articles
by authors

[Back to Top]