Advanced Search
Article Contents
Article Contents

Some classes of LCD codes and self-orthogonal codes over finite fields

  • * Corresponding author: Chunming Tang

    * Corresponding author: Chunming Tang 
Abstract Full Text(HTML) Figure(0) / Table(4) Related Papers Cited by
  • Due to their important applications in theory and practice, linear complementary dual (LCD) codes and self-orthogonal codes have received much attention in the last decade. The objective of this paper is to extend a recent construction of binary LCD codes and self-orthogonal codes to the general $ p $-ary case, where $ p $ is an odd prime. Based on the extended construction, several classes of $ p $-ary linear codes are obtained. The characterizations of these linear codes to be LCD or self-orthogonal are derived. The duals of these linear codes are also studied. It turns out that the proposed linear codes are optimal in many cases in the sense that their parameters meet certain bounds on linear codes. The weight distributions of these linear codes are settled.

    Mathematics Subject Classification: Primary: 06E75, 94A60, 11T23.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The weight distribution of $ {\mathcal C}_{D_{t}} $ for $ 1\leq t\leq m $

    Weight Multiplicity
    $ 0 $ $ 1 $ time
    $ \frac{(p-1)n-(p-1)K_{t}(k,m)}{p} $ for $ k=1,2,\cdots,m-1 $ $ (p-1)^k{m\choose k} $ times
    $ \frac{(p-1){m\choose t}((p-1)^t+(-1)^{t+1})}{p} $ $ (p-1)^m $ times
     | Show Table
    DownLoad: CSV

    Table 2.  The weight distribution of $ {\mathcal C}_{D_{t}} $ for $ 1\leq t\leq m $

    Weight Multiplicity
    $ 0 $ $ 1 $ time
    $ \frac{\sum^t\limits_{i=1}(p-1)^{i+1}{{m}\choose{i}}-(p-1)^{t+1}{{m-1}\choose{t}}+p-1}{p} $ $ (p-1)m $ times
    $ \frac{(p-1)n-(p-1)K_{t}(k-1,m-1)+(p-1)}{p} $ $ k=2,\cdots,m $ $ (p-1)^k{m\choose k} $ times
     | Show Table
    DownLoad: CSV

    Table 3.  The weight distribution of $ \mathcal C_{\overline{D}_ t} $ for $ 1\leq t\leq m $

    Weight Multiplicity
    $ 0 $ $ 1 $ time
    $ \frac{(p-1)n-(p-1) \left ( K_{t}(k,m)+ K_{m}(k,m) \right )}{p} $ for $ k=1,2,\cdots,m-1 $ $ (p-1)^k{m\choose k} $ times
    $ \frac{(p-1){m\choose t}((p-1)^t+(-1)^{t+1})+(p-1)((p-1)^m-(-1)^m)}{p} $ $ (p-1)^m $ times
     | Show Table
    DownLoad: CSV

    Table 4.  The weight distribution of $ {\mathcal C}_{\overline{D}_{t}} $ for $ 1\leq t\leq m $

    Weight Multiplicity
    $ 0 $ $ 1 $ time
    $ \frac{p(p-1)^{m}+\sum^t\limits_{i=1}(p-1)^{i+1}{{m}\choose{i}}-(p-1)^{t+1}{{m-1}\choose{t}}+p-1}{p} $ $ (p-1)m $ times
    $ \frac{(p-1)n-(p-1)\left ( K_{t}(k-1,m-1)+K_{m}(k,m) -1\right )}{p} $ $ k=2,\cdots,m $ $ (p-1)^k{m\choose k} $ times
     | Show Table
    DownLoad: CSV
  • [1] E. R. Berlekamp, Algebraic Coding Theory, Revised edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9407.
    [2] J. BringerC. CarletH. ChabanneS. Guilley and H. Maghrebi, Orthogonal direct sum masking, a smartcard friendly computation paradigm in a code, with Builtin protection against side-channel and fault attacks, Proceedings of WISTP 2014, Lecture Notes in Computer Science, 8501 (2014), 40-56. 
    [3] A. K. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett., 78 (1997), 405-408.  doi: 10.1103/PhysRevLett.78.405.
    [4] A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $\mathbb{GF} (4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.
    [5] C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, E. R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series in Mathematical Sciences, 3 (2014), 97-105. 
    [6] C. CarletX. ZengC. Li and L. Hu, Further properties of several classes of boolean functions with optimum algebraic immunity, Des. Codes Cryptogr, 52 (2009), 303-338.  doi: 10.1007/s10623-009-9284-0.
    [7] C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $\mathbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.
    [8] C. CarletS. MesnagerC. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Designs, Codes Cryptogr., 86 (2018), 2605-2618.  doi: 10.1007/s10623-018-0463-8.
    [9] C. Carlet, S. Mesnager, C. Tang and Y. Qi, On $\sigma$-LCD codes, IEEE Trans. Inform. Theory, accepted for publication. doi: 10.1109/TIT.2018.2873130.
    [10] H. ChenS. Ling and C. Xing, Quantum codes from concatenated algebraic-geometric codes, IEEE Trans. Inform. Theory, 51 (2005), 2915-2920.  doi: 10.1109/TIT.2005.851760.
    [11] D. K. DalaiS. Maitra and S. Sarkar, Basic theory in construction of boolean functions with maximum possible annihilator immunity, Des. Codes Cryptogr, 40 (2006), 41-58.  doi: 10.1007/s10623-005-6300-x.
    [12] C. Ding, Linear codes from some 2-designs, IEEE Trans. Inform. Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118.
    [13] S. T. DoughertyJ.-L. KimB. ÖzkayaL. Sok and P. Solé, The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices, International Journal of Information and Coding Theory, 4 (2017), 116-128.  doi: 10.1504/IJICOT.2017.083827.
    [14] M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl., 15 (2009), 375-386.  doi: 10.1016/j.ffa.2009.01.002.
    [15] D. Gottesman, A class of quantum error-correcting codes saturating the quantum Hamming bounds, Phys. Rev. A, 54 (1996), 1862-1868.  doi: 10.1103/PhysRevA.54.1862.
    [16] Z. HengC. Ding and Z. Zhou, Minimal linear codes over finite fields, Finite Fields and Their Applicaitons, 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.
    [17] W. C. Huffman and  V. PlessFundamentals of Error-Correcting Codes, Cambridge university press, 2003.  doi: 10.1017/CBO9780511807077.
    [18] L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 63 (2017), 2843-2847. 
    [19] L. Jin and C. Xing, Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes, IEEE Trans. Inform. Theory, 58 (2012), 5484-5489.  doi: 10.1109/TIT.2011.2177066.
    [20] T. Kløve, Codes for Error Detection, World Scientific, 2007. doi: 10.1142/9789812770516.
    [21] C. LiC. Ding and S. X. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.
    [22] S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717. 
    [23] C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.  doi: 10.1007/s10623-017-0447-0.
    [24] S. Lloyd, Binary block coding, Bell Labs Technical Journal, 36 (1957), 517-535.  doi: 10.1002/j.1538-7305.1957.tb02410.x.
    [25] E. Lucas, Sur les congruences des nombres euleriennes et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. (France), 6 (1878), 49-54. 
    [26] J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.  doi: 10.1016/S0019-9958(64)90438-3.
    [27] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.
    [28] S. MesnagerC. Tang and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory, 64 (2018), 2390-2397.  doi: 10.1109/TIT.2017.2766075.
    [29] N. Sendrier, Linear codes with complementary duals meet the Gilbert–Varshamov bound, Discrete Math., 285 (2004), 345-347.  doi: 10.1016/j.disc.2004.05.005.
    [30] A. Sharma, Self-dual and self-orthogonal negacyclic codes of length $2^mp^n$ over a finite field, Discrete Mathematics, 338 (2015), 576-592.  doi: 10.1016/j.disc.2014.11.008.
    [31] X. ShiQ. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed–Solomon codes, Cryptogr. Commun., 10 (2018), 1165-1182.  doi: 10.1007/s12095-017-0274-1.
    [32] R. Townsend and E. Weldon, Self-orthogonal quasi-cyclic codes, IEEE Transactions on Information Theory, 13 (1967), 183-195.  doi: 10.1109/TIT.1967.1053974.
    [33] K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible cyclic codes, IEEE Trans. Inform. Theory, 16 (1970), 644-646.  doi: 10.1109/tit.1970.1054517.
    [34] H. YanH. LiuC. Li and S. Yang, Parameters of LCD BCH codes with two lengths, Advances in Mathematics of Communications, 12 (2018), 579-594.  doi: 10.3934/amc.2018034.
    [35] T. Zhang and G. Ge, Quantum codes derived from certain classes of polynomials, IEEE Transactions on Information Theory, 62 (2016), 6638-6643.  doi: 10.1109/TIT.2016.2612578.
    [36] Z. ZhouC. TangX. Li and C. Ding, Binary LCD Codes and Self-orthogonal Codes from a Generic Construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27.  doi: 10.1109/TIT.2018.2823704.
  • 加载中



Article Metrics

HTML views(773) PDF downloads(678) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint