[1]
|
E. R. Berlekamp, Algebraic Coding Theory, Revised edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9407.
|
[2]
|
J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking, a smartcard friendly computation paradigm in a code, with Builtin protection against side-channel and fault attacks, Proceedings of WISTP 2014, Lecture Notes in Computer Science, 8501 (2014), 40-56.
|
[3]
|
A. K. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett., 78 (1997), 405-408.
doi: 10.1103/PhysRevLett.78.405.
|
[4]
|
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $\mathbb{GF} (4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[5]
|
C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, E. R. Pinto et al. (eds.), Coding Theory and Applications, CIM Series in Mathematical Sciences, 3 (2014), 97-105.
|
[6]
|
C. Carlet, X. Zeng, C. Li and L. Hu, Further properties of several classes of boolean functions with optimum algebraic immunity, Des. Codes Cryptogr, 52 (2009), 303-338.
doi: 10.1007/s10623-009-9284-0.
|
[7]
|
C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, Linear codes over $\mathbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.
doi: 10.1109/TIT.2018.2789347.
|
[8]
|
C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Designs, Codes Cryptogr., 86 (2018), 2605-2618.
doi: 10.1007/s10623-018-0463-8.
|
[9]
|
C. Carlet, S. Mesnager, C. Tang and Y. Qi, On $\sigma$-LCD codes, IEEE Trans. Inform. Theory, accepted for publication.
doi: 10.1109/TIT.2018.2873130.
|
[10]
|
H. Chen, S. Ling and C. Xing, Quantum codes from concatenated algebraic-geometric codes, IEEE Trans. Inform. Theory, 51 (2005), 2915-2920.
doi: 10.1109/TIT.2005.851760.
|
[11]
|
D. K. Dalai, S. Maitra and S. Sarkar, Basic theory in construction of boolean functions with maximum possible annihilator immunity, Des. Codes Cryptogr, 40 (2006), 41-58.
doi: 10.1007/s10623-005-6300-x.
|
[12]
|
C. Ding, Linear codes from some 2-designs, IEEE Trans. Inform. Theory, 61 (2015), 3265-3275.
doi: 10.1109/TIT.2015.2420118.
|
[13]
|
S. T. Dougherty, J.-L. Kim, B. Özkaya, L. Sok and P. Solé, The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices, International Journal of Information and Coding Theory, 4 (2017), 116-128.
doi: 10.1504/IJICOT.2017.083827.
|
[14]
|
M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl., 15 (2009), 375-386.
doi: 10.1016/j.ffa.2009.01.002.
|
[15]
|
D. Gottesman, A class of quantum error-correcting codes saturating the quantum Hamming bounds, Phys. Rev. A, 54 (1996), 1862-1868.
doi: 10.1103/PhysRevA.54.1862.
|
[16]
|
Z. Heng, C. Ding and Z. Zhou, Minimal linear codes over finite fields, Finite Fields and Their Applicaitons, 54 (2018), 176-196.
doi: 10.1016/j.ffa.2018.08.010.
|
[17]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge university press, 2003.
doi: 10.1017/CBO9780511807077.
|
[18]
|
L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 63 (2017), 2843-2847.
|
[19]
|
L. Jin and C. Xing, Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes, IEEE Trans. Inform. Theory, 58 (2012), 5484-5489.
doi: 10.1109/TIT.2011.2177066.
|
[20]
|
T. Kløve, Codes for Error Detection, World Scientific, 2007.
doi: 10.1142/9789812770516.
|
[21]
|
C. Li, C. Ding and S. X. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.
doi: 10.1109/TIT.2017.2672961.
|
[22]
|
S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.
|
[23]
|
C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.
doi: 10.1007/s10623-017-0447-0.
|
[24]
|
S. Lloyd, Binary block coding, Bell Labs Technical Journal, 36 (1957), 517-535.
doi: 10.1002/j.1538-7305.1957.tb02410.x.
|
[25]
|
E. Lucas, Sur les congruences des nombres euleriennes et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. (France), 6 (1878), 49-54.
|
[26]
|
J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.
doi: 10.1016/S0019-9958(64)90438-3.
|
[27]
|
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U.
|
[28]
|
S. Mesnager, C. Tang and Y. Qi, Complementary dual algebraic geometry codes, IEEE Trans. Inform. Theory, 64 (2018), 2390-2397.
doi: 10.1109/TIT.2017.2766075.
|
[29]
|
N. Sendrier, Linear codes with complementary duals meet the Gilbert–Varshamov bound, Discrete Math., 285 (2004), 345-347.
doi: 10.1016/j.disc.2004.05.005.
|
[30]
|
A. Sharma, Self-dual and self-orthogonal negacyclic codes of length $2^mp^n$ over a finite field, Discrete Mathematics, 338 (2015), 576-592.
doi: 10.1016/j.disc.2014.11.008.
|
[31]
|
X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed–Solomon codes, Cryptogr. Commun., 10 (2018), 1165-1182.
doi: 10.1007/s12095-017-0274-1.
|
[32]
|
R. Townsend and E. Weldon, Self-orthogonal quasi-cyclic codes, IEEE Transactions on Information Theory, 13 (1967), 183-195.
doi: 10.1109/TIT.1967.1053974.
|
[33]
|
K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible cyclic codes, IEEE Trans. Inform. Theory, 16 (1970), 644-646.
doi: 10.1109/tit.1970.1054517.
|
[34]
|
H. Yan, H. Liu, C. Li and S. Yang, Parameters of LCD BCH codes with two lengths, Advances in Mathematics of Communications, 12 (2018), 579-594.
doi: 10.3934/amc.2018034.
|
[35]
|
T. Zhang and G. Ge, Quantum codes derived from certain classes of polynomials, IEEE Transactions on Information Theory, 62 (2016), 6638-6643.
doi: 10.1109/TIT.2016.2612578.
|
[36]
|
Z. Zhou, C. Tang, X. Li and C. Ding, Binary LCD Codes and Self-orthogonal Codes from a Generic Construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27.
doi: 10.1109/TIT.2018.2823704.
|