May  2019, 13(2): 281-296. doi: 10.3934/amc.2019019

Some new constructions of isodual and LCD codes over finite fields

1. 

University M'Hamed Bougara of Boumerdes, Faculty of Sciences, Boumerdes, Algeria

2. 

University of Science and Technology: Houari Boumediene, Faculty of Mathematics, Algiers, 16411, Algeria

3. 

Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada

* Corresponding author: Aicha Batoul

Received  April 2018 Revised  August 2018 Published  February 2019

This paper presents some new constructions of LCD, isodual, self-dual and LCD-isodual codes based on the structure of repeated-root constacyclic codes. We first characterize repeated-root constacyclic codes in terms of their generator polynomials and lengths. Then we provide simple conditions on the existence of repeated-root codes which are either self-dual negacyclic or LCD cyclic and negacyclic. This leads to the construction of LCD, self-dual, isodual, and LCD-isodual cyclic and negacyclic codes.

Citation: Fatma-Zohra Benahmed, Kenza Guenda, Aicha Batoul, Thomas Aaron Gulliver. Some new constructions of isodual and LCD codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 281-296. doi: 10.3934/amc.2019019
References:
[1]

C. BachocT. A. Gulliver and M. Harada, Isodual codes over $Z_2k$ and isodual lattices, J. Algebra. Combin., 12 (2000), 223-240.  doi: 10.1023/A:1011259823212.  Google Scholar

[2]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.  Google Scholar

[3]

A. BatoulK. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, Adv. Math. Commun., 10 (2016), 683-694.  doi: 10.3934/amc.2016034.  Google Scholar

[4]

A. Batoul, K. Guenda and T. A. Gulliver, Repeated-root isodual cyclic codes over finite fields, in Codes, Cryptology and Information Security (eds. S. El Hajji et al.), Lecture Notes in Computer Science, 9084, Springer, Cham, (2015), 119–132. doi: 10.1007%2F978-3-319-18681-8_10.  Google Scholar

[5]

A. Batoul, K. Guenda, T. A. Gulliver and N. Aydin, On isodual cyclic codes over finite chain rings, in Codes, Cryptology and Information Security (eds. S. El Hajji et al.), Lecture Notes in Computer Science, 10194, Springer, Cham, (2017), 176–194. doi: 10.1007/978-3-319-55589-8_12.  Google Scholar

[6]

S. D. Berman, Semisimple cyclic and abelian codes Ⅱ, Cybernetics and Systems Analysis, 3 (1967), 17-23.   Google Scholar

[7]

T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.  doi: 10.1016/j.ffa.2008.05.004.  Google Scholar

[8]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.  Google Scholar

[9]

C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $ \mathbb{F}_q$ equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.  Google Scholar

[10]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.  doi: 10.1016/j.ffa.2012.10.001.  Google Scholar

[11]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[12]

H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3{p^s}$ and their duals, Discrete Math., 313 (2013), 983-991.  doi: 10.1016/j.disc.2013.01.024.  Google Scholar

[13]

H. Q. Dinh, Repeated-root cyclic and negacyclic codes of length $6{p^s}$, Contemporary Mathematics, 609 (2014), 69-87.  doi: 10.1090/conm/609.  Google Scholar

[14]

G. FalknerB. KowolW. Heise and E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena, 28 (1979), 326-341.   Google Scholar

[15]

M. Grassl, Code tables: Bounds on the parameters of various types of codes, Available from: http://www.codetables.de. Google Scholar

[16]

K. Guenda, Dimension and minimum distance of a class of BCH codes, Annales Des Sciences Mathmatiques du Québec, 32 (2008), 57–62. Available from: http://www.labmath.uqam.ca/~annales/volumes/32-1/PDF/057-062.pdf.  Google Scholar

[17]

K. Guenda, New MDS self-dual codes over finite fields, Des., Codes and Crypt., 62 (2012), 31-42.  doi: 10.1007/s10623-011-9489-x.  Google Scholar

[18]

K. Guenda and T. A. Gulliver, Self-dual repeated-root cyclic and negacyclic codes over finite fields, Proc. IEEE Int. Symp. Inform. Theory, (2012), 2904–2908. Google Scholar

[19]

K. Guenda and T. A. Gulliver, Repeated-root constacyclic codes of length $mp^s$ over $ \mathbb{F}_{p^r}+u \mathbb{F}_{p^r}+ u^{e-1} \mathbb{F}_{p^r}$, Journal of Algebra and Its Applications, 14 (2015), 1450081, 1–12. Google Scholar

[20] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, New York, USA, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[21]

S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.  doi: 10.1109/TIT.2017.2723363.  Google Scholar

[22]

X. LiuY. Fan and H. Liu, Galois LCD codes over finite fields, Finite Fields and Applications, 49 (2018), 227-242.  doi: 10.1016/j.ffa.2017.10.001.  Google Scholar

[23]

J. L. Massey, Linear codes with complementary duals, Discr. Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[24]

B. PangS. Zhu and J. Li, On LCD repeated-root cyclic codes over finite fields, J. Appl. Math. Comput., 56 (2018), 625-635.  doi: 10.1007/s12190-017-1118-z.  Google Scholar

[25]

J. H. Van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory, 37 (1991), 343-345.  doi: 10.1109/18.75250.  Google Scholar

[26]

X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discr. Math., 126 (1994), 391-393.  doi: 10.1016/0012-365X(94)90283-6.  Google Scholar

show all references

References:
[1]

C. BachocT. A. Gulliver and M. Harada, Isodual codes over $Z_2k$ and isodual lattices, J. Algebra. Combin., 12 (2000), 223-240.  doi: 10.1023/A:1011259823212.  Google Scholar

[2]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.  Google Scholar

[3]

A. BatoulK. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, Adv. Math. Commun., 10 (2016), 683-694.  doi: 10.3934/amc.2016034.  Google Scholar

[4]

A. Batoul, K. Guenda and T. A. Gulliver, Repeated-root isodual cyclic codes over finite fields, in Codes, Cryptology and Information Security (eds. S. El Hajji et al.), Lecture Notes in Computer Science, 9084, Springer, Cham, (2015), 119–132. doi: 10.1007%2F978-3-319-18681-8_10.  Google Scholar

[5]

A. Batoul, K. Guenda, T. A. Gulliver and N. Aydin, On isodual cyclic codes over finite chain rings, in Codes, Cryptology and Information Security (eds. S. El Hajji et al.), Lecture Notes in Computer Science, 10194, Springer, Cham, (2017), 176–194. doi: 10.1007/978-3-319-55589-8_12.  Google Scholar

[6]

S. D. Berman, Semisimple cyclic and abelian codes Ⅱ, Cybernetics and Systems Analysis, 3 (1967), 17-23.   Google Scholar

[7]

T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.  doi: 10.1016/j.ffa.2008.05.004.  Google Scholar

[8]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.  Google Scholar

[9]

C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $ \mathbb{F}_q$ equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347.  Google Scholar

[10]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.  doi: 10.1016/j.ffa.2012.10.001.  Google Scholar

[11]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[12]

H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3{p^s}$ and their duals, Discrete Math., 313 (2013), 983-991.  doi: 10.1016/j.disc.2013.01.024.  Google Scholar

[13]

H. Q. Dinh, Repeated-root cyclic and negacyclic codes of length $6{p^s}$, Contemporary Mathematics, 609 (2014), 69-87.  doi: 10.1090/conm/609.  Google Scholar

[14]

G. FalknerB. KowolW. Heise and E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena, 28 (1979), 326-341.   Google Scholar

[15]

M. Grassl, Code tables: Bounds on the parameters of various types of codes, Available from: http://www.codetables.de. Google Scholar

[16]

K. Guenda, Dimension and minimum distance of a class of BCH codes, Annales Des Sciences Mathmatiques du Québec, 32 (2008), 57–62. Available from: http://www.labmath.uqam.ca/~annales/volumes/32-1/PDF/057-062.pdf.  Google Scholar

[17]

K. Guenda, New MDS self-dual codes over finite fields, Des., Codes and Crypt., 62 (2012), 31-42.  doi: 10.1007/s10623-011-9489-x.  Google Scholar

[18]

K. Guenda and T. A. Gulliver, Self-dual repeated-root cyclic and negacyclic codes over finite fields, Proc. IEEE Int. Symp. Inform. Theory, (2012), 2904–2908. Google Scholar

[19]

K. Guenda and T. A. Gulliver, Repeated-root constacyclic codes of length $mp^s$ over $ \mathbb{F}_{p^r}+u \mathbb{F}_{p^r}+ u^{e-1} \mathbb{F}_{p^r}$, Journal of Algebra and Its Applications, 14 (2015), 1450081, 1–12. Google Scholar

[20] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, New York, USA, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[21]

S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717.  doi: 10.1109/TIT.2017.2723363.  Google Scholar

[22]

X. LiuY. Fan and H. Liu, Galois LCD codes over finite fields, Finite Fields and Applications, 49 (2018), 227-242.  doi: 10.1016/j.ffa.2017.10.001.  Google Scholar

[23]

J. L. Massey, Linear codes with complementary duals, Discr. Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[24]

B. PangS. Zhu and J. Li, On LCD repeated-root cyclic codes over finite fields, J. Appl. Math. Comput., 56 (2018), 625-635.  doi: 10.1007/s12190-017-1118-z.  Google Scholar

[25]

J. H. Van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory, 37 (1991), 343-345.  doi: 10.1109/18.75250.  Google Scholar

[26]

X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discr. Math., 126 (1994), 391-393.  doi: 10.1016/0012-365X(94)90283-6.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (327)
  • HTML views (525)
  • Cited by (0)

[Back to Top]