[1]
|
E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.
|
[2]
|
J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261.
doi: 10.2307/2373163.
|
[3]
|
I. A. Berchenko and P. J. Olver, Symmetries of polynomials, J. Symb. Comp., 29 (2000), 485-514.
doi: 10.1006/S0747-7171(99)90307-3.
|
[4]
|
K. Betsumiya and M. Harada, Classification of formally self-dual even codes of lengths up to 16, Des. Codes Cryptogr., 23 (2001), 325-332.
doi: 10.1023/A:1011223128089.
|
[5]
|
H. F. Blichfeldt, Finite Collineation Groups, The Univ. Chicago Press, Chicago, 1917.
|
[6]
|
M. Borello, On the automorphism groups of binary linear codes, Topics in Finite Fields, Contemporary Mathematics, 632 (2015), 29-41.
doi: 10.1090/conm/632/12617.
|
[7]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbol. Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[8]
|
N. D. Elkies, Linear codes and algebraic geometry in higher dimensions, Preprint, 2006.
|
[9]
|
A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes
du Congrès International des Mathématiciens (Nice, 1970), Tome 3 (1971), 211–215.
|
[10]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge university press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[11]
|
N. Kaplan, Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory, (Doctoral dissertation), Harvard University, 2013, Retrieved from: http://users.math.yale.edu/ nk354/papers/kaplanthesis.pdf.
|
[12]
|
G. T. Kennedy, Weight distributions of linear codes and the Gleason-Pierce theorem, J. Combin. Theory Ser. A, 67 (1994), 72-88.
doi: 10.1016/0097-3165(94)90004-3.
|
[13]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Ⅰ. North-Holland Publishing Co., Amsterdam-New York-Oxford. North-Holland Mathematical Library, 1977.
|
[14]
|
C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Information and Control, 22 (1973), 188-200.
doi: 10.1016/S0019-9958(73)90273-8.
|
[15]
|
O. Mila, Invariance for Weight Enumerators of Evaluation Codes and Counting $ {\mathbb{F}}_q$-rational Points on Hypersurfaces, (Master dissertation), EPFL, 2015, Retrieved from: http://archiveweb.epfl.ch/csag.epfl.ch/files/content/sites/csag/files/MasterOlivierMila.pdf.
|
[16]
|
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-dual Codes and Invariant Theory, Vol. 17. Berlin: Springer, 2006.
|
[17]
|
E. M. Rains and N. J. A. Sloane, Self-dual codes, In: Pless, V.S., Huffman, W.C. (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, (2002), 177–294.
|
[18]
|
N. Sloane, Is there a (72, 36) d = 16 self-dual code?, IEEE Transactions on Information Theory, 19 (1973), 251-251.
doi: 10.1109/tit.1973.1054975.
|
[19]
|
N. J. A. Sloane, Gleason's Theorem on self-dual codes and its generalizations, preprint, arXiv: math/0612535.
|