May  2019, 13(2): 329-341. doi: 10.3934/amc.2019022

Constructions of optimal balanced $ (m, n, \{4, 5\}, 1) $-OOSPCs

1. 

Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan

2. 

Xingjian College of Science and Liberal Arts, Guangxi University, Nanning 530004, China

3. 

Guangxi Key Lab of Multi-source Information Mining & Security, Department of Mathematics, Guangxi Normal University, Guilin 541004, China

* Corresponding author: Dianhua Wu

Received  June 2018 Published  January 2019

Fund Project: The second author is supported in part by Guangxi Nature Science Foundation (No. 2018GXNSFA138038). The third author is supported by the Project of Basic Ability Improvement of Young and Middle-Aged Teachers of Universities in Guangxi (No. 2017KY1301). The last author is supported in part by NSFC (No. 11671103, 11801103), Guangxi Nature Science Foundation (No. 2017GXNSFBA198030), and Foundation of Guangxi Key Lab of Multi-Source Information Mining and Security (No. 18-A-03-01)

Kitayama proposed a novel OCDMA (called spatial CDMA) for parallel transmission of 2-D images through multicore fiber. Optical orthogonal signature pattern codes (OOSPCs) play an important role in this CDMA network. Multiple-weight (MW) optical orthogonal signature pattern code (OOSPC) was introduced by Kwong and Yang for 2-D image transmission in multicore-fiber optical code-division multiple-access (OCDMA) networks with multiple quality of services (QoS) requirements. Some results had been done on optimal balanced $ (m, n, \{3, 4\}, 1) $-OOSPCs. In this paper, it is proved that there exist optimal balanced $ (2u, 16v, \{4, 5\}, 1) $-OOSPCs for odd integers $ u\geq 1 $, $ v\geq 1 $.

Citation: Wei Li, Hengming Zhao, Rongcun Qin, Dianhua Wu. Constructions of optimal balanced $ (m, n, \{4, 5\}, 1) $-OOSPCs. Advances in Mathematics of Communications, 2019, 13 (2) : 329-341. doi: 10.3934/amc.2019022
References:
[1]

R. J. R. Abel, C. J. Colbourn and J. H. Dinitz, Mutually orthogonal latin squares (MOLS), In: C. J. Colbourn, J. H. Dinitz, eds. CRC Handbook of Combinatorial Designs, New York: CRC Press, 2007,160–193. Google Scholar

[2]

M. Buratti, A power method for constructing difference families and optimal optical orthogonal codes, Des. Codes Cryptogr., 5 (1995), 13-25.  doi: 10.1007/BF01388501.  Google Scholar

[3]

M. Buratti, Recursive constructions for difference matrices and relative difference families, J. Combin. Des., 6 (1998), 165-182.   Google Scholar

[4]

M. BurattiY. WeiD. WuP. Fan and M. Cheng, Relative difference families with variable block sizes and their related OOCs, IEEE Trans. Inform. Theory, 57 (2011), 7489-7497.  doi: 10.1109/TIT.2011.2162225.  Google Scholar

[5]

J. ChenL. Ji and Y. Li, Combinatorial constructions of optimal $(m, n, 4, 2)$ optical orthogonal signature pattern codes, Des. Codes Cryptogr., 86 (2018), 1499-1525.  doi: 10.1007/s10623-017-0409-6.  Google Scholar

[6]

J. ChenL. Ji and Y. Li, New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4, Des. Codes Cryptogr., 85 (2017), 299-318.  doi: 10.1007/s10623-016-0310-8.  Google Scholar

[7]

C. J. Colbourn, Difference matrices, In: C. J. Colbourn, J. H. Dinitz, eds. CRC Handbook of Combinatorial Designs, New York: CRC Press, 2007,411–419. Google Scholar

[8]

P. A. Davies and A. A. Shaar, Asynchronous multiplexing for an optical-fibre local area network, Electron. Leu., 19 (1983), 390-392.  doi: 10.1049/el:19830270.  Google Scholar

[9]

I. B. DjordjevicB. Vasic and J. Rorison, Design of multiweight unipolar codes for multimedia optical CDMA applications based on pairwise balanced designs, J. Lightw. Technol., 21 (2003), 1850-1856.  doi: 10.1109/JLT.2003.816819.  Google Scholar

[10]

G. Ge, On $(g, 4;1)$-diffference matrices, Discrete Math., 301 (2005), 164-174.  doi: 10.1016/j.disc.2005.07.004.  Google Scholar

[11]

F. R. Gu and J. Wu, Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems, J. Lightw. Technol., 23 (2005), 740-748.  doi: 10.1109/JLT.2004.838880.  Google Scholar

[12]

A. A. HassanJ. E. Hershey and N. A. Riza, Spatial optical CDMA, Perspectives in Spread Spectrum, 459 (1995), 107-125.  doi: 10.1007/978-1-4615-5531-5_5.  Google Scholar

[13]

J. Y. Hui, Pattern code modulation and optical decoding a novel code division multiplexing technique for multifiber networks, IEEE J. Select. Areas Commun., 3 (1985), 916-927.  doi: 10.1109/JSAC.1985.1146265.  Google Scholar

[14]

L. JiB. DingX. Wang and G. Ge, Asymptotically optimal optical orthogonal signature pattern codes, IEEE Trans. Inform. Theory, 64 (2018), 5419-5431.  doi: 10.1109/TIT.2017.2787593.  Google Scholar

[15]

J. JiangD. Wu and M. H. Lee, Some infinte classes of optimal $(v, \{3, 4\}, 1, Q)$-OOCs with $Q\in\{\{1/3, 2/3\}, \{2/3, 1/3\}\}$, Graphs Combin., 29 (2013), 1795-1811.  doi: 10.1007/s00373-012-1235-2.  Google Scholar

[16]

K. Kitayama, Novel spatial spread spectrum based fiber optic CDMA networks for image transmission, IEEE J. Select. Areas Commun., 12 (1994), 762-772.  doi: 10.1109/49.286683.  Google Scholar

[17]

W. C. Kwong and G. C. Yang, Double-weight signature pattern codes for multicore-fiber code-division multiple-access networks, IEEE Commun. Lett., 5 (2001), 203-205.  doi: 10.1109/4234.922760.  Google Scholar

[18]

W. Kwong and G. C. Yang, Image transmission in multicore-fiber code-division multiple-access networks, IEEE Commun. Lett., 2 (1998), 285-287.  doi: 10.1109/4234.725225.  Google Scholar

[19]

R. Pan and Y. Chang, A note on difference matrices over non-cyclic finite abelian groups, Discrete Math., 339 (2016), 822-830.  doi: 10.1016/j.disc.2015.10.028.  Google Scholar

[20]

R. Pan and Y. Chang, Combinatorial constructions for maximum optical orthogonal signature pattern codes, Discrete Math., 33 (2013), 2918-2931.  doi: 10.1016/j.disc.2013.09.005.  Google Scholar

[21]

R. Pan and Y. Chang, Determination of the sizes of optimal $(m, n, k, \lambda, k-1)$-OOSPCs for $\lambda = k-1, k$, Discrete Math., 313 (2013), 1327-1337.  doi: 10.1016/j.disc.2013.02.019.  Google Scholar

[22]

R. Pan and Y. Chang, Further results on optimal $(m, n, 4, 1)$ optical orthogonal signature pattern codes (in Chinese), Sci. Sin. Math., 44 (2014), 1141-1152.   Google Scholar

[23]

R. Pan and Y. Chang, $(m, n, 3, 1)$ optical orthogonal signature pattern codes with maximum possible size, IEEE Trans. Inform. Theorey, 61 (2015), 443-461. Google Scholar

[24]

E. ParkA. J. Mendez and E. M. Garmire, Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks, IEEE Photon. Technol. Lett., 4 (1992), 1160-1162.  doi: 10.1109/68.163765.  Google Scholar

[25]

P. R. PrucnalM. A. Santoro and T. R. Fan, Spread spectrum fiberoptic local network using optical processing, IEEE J. Lightwave Technol., LT-4 (1986), 547-554.   Google Scholar

[26]

J. A. Salehi, Emerging optical code-division multiple access communications systems, IEEE Network, 3 (1989), 31-39.  doi: 10.1109/65.21908.  Google Scholar

[27]

M. Sawa, Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4, IEEE Trans. Inform. Theorey, 56 (2010), 3613- = 3620. doi: 10.1109/TIT.2010.2048487.  Google Scholar

[28]

M. Sawa and S. Kageyama, Optimal optical orthogonal signature pattern codes of weight 3, Biom. Lett., 46 (2009), 89-102.   Google Scholar

[29]

S. TamuraS. Nakano and K. Okazaki, Optical codemultiplex transmission by gold sequences, IEEE J. Lightwave Technol., LT-3 (1985), 121-127.   Google Scholar

[30]

D. WuH. ZhaoP. Fan and S. Shinohara, Optimal variable-weight optical orthogonal codes via difference packings, IEEE Trans. Inform. Theorey, 53 (2010), 4053-4060.  doi: 10.1109/TIT.2010.2050927.  Google Scholar

[31]

G. C. Yang, Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements, IEEE Trans. Commun., 44 (1996), 47-55.   Google Scholar

[32]

G. C. Yang and W. C. Kwong, Two-dimensional spatial signature patterns, IEEE Trans. Commun., 44 (1996), 184-191.   Google Scholar

[33]

H. Zhao, New optimal $(v, \{4, 5\}, 1, \{1/2, 1/2\})$-OOCs, J. Guangxi Teachers Edu. University, 28 (2011), 17-22.   Google Scholar

[34]

H. Zhao, On balanced optimal $(18u, \{3, 4\}, 1)$ optical orthogonal codes, J. Combin. Des., 20 (2012), 290-303.  doi: 10.1002/jcd.21303.  Google Scholar

[35]

H. Zhao and R. Qin, Combinatorial constructions for optimal multiple-weight optical orthogonal signature pattern codes, Discrete Math., 339 (2016), 179-193.  doi: 10.1016/j.disc.2015.08.005.  Google Scholar

[36]

H. ZhaoD. Wu and P. Fan, Constructions of optimal variable-weight optical orthogonal codes, J. Combin. Des., 18 (2010), 274-291.  doi: 10.1002/jcd.20246.  Google Scholar

show all references

References:
[1]

R. J. R. Abel, C. J. Colbourn and J. H. Dinitz, Mutually orthogonal latin squares (MOLS), In: C. J. Colbourn, J. H. Dinitz, eds. CRC Handbook of Combinatorial Designs, New York: CRC Press, 2007,160–193. Google Scholar

[2]

M. Buratti, A power method for constructing difference families and optimal optical orthogonal codes, Des. Codes Cryptogr., 5 (1995), 13-25.  doi: 10.1007/BF01388501.  Google Scholar

[3]

M. Buratti, Recursive constructions for difference matrices and relative difference families, J. Combin. Des., 6 (1998), 165-182.   Google Scholar

[4]

M. BurattiY. WeiD. WuP. Fan and M. Cheng, Relative difference families with variable block sizes and their related OOCs, IEEE Trans. Inform. Theory, 57 (2011), 7489-7497.  doi: 10.1109/TIT.2011.2162225.  Google Scholar

[5]

J. ChenL. Ji and Y. Li, Combinatorial constructions of optimal $(m, n, 4, 2)$ optical orthogonal signature pattern codes, Des. Codes Cryptogr., 86 (2018), 1499-1525.  doi: 10.1007/s10623-017-0409-6.  Google Scholar

[6]

J. ChenL. Ji and Y. Li, New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4, Des. Codes Cryptogr., 85 (2017), 299-318.  doi: 10.1007/s10623-016-0310-8.  Google Scholar

[7]

C. J. Colbourn, Difference matrices, In: C. J. Colbourn, J. H. Dinitz, eds. CRC Handbook of Combinatorial Designs, New York: CRC Press, 2007,411–419. Google Scholar

[8]

P. A. Davies and A. A. Shaar, Asynchronous multiplexing for an optical-fibre local area network, Electron. Leu., 19 (1983), 390-392.  doi: 10.1049/el:19830270.  Google Scholar

[9]

I. B. DjordjevicB. Vasic and J. Rorison, Design of multiweight unipolar codes for multimedia optical CDMA applications based on pairwise balanced designs, J. Lightw. Technol., 21 (2003), 1850-1856.  doi: 10.1109/JLT.2003.816819.  Google Scholar

[10]

G. Ge, On $(g, 4;1)$-diffference matrices, Discrete Math., 301 (2005), 164-174.  doi: 10.1016/j.disc.2005.07.004.  Google Scholar

[11]

F. R. Gu and J. Wu, Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems, J. Lightw. Technol., 23 (2005), 740-748.  doi: 10.1109/JLT.2004.838880.  Google Scholar

[12]

A. A. HassanJ. E. Hershey and N. A. Riza, Spatial optical CDMA, Perspectives in Spread Spectrum, 459 (1995), 107-125.  doi: 10.1007/978-1-4615-5531-5_5.  Google Scholar

[13]

J. Y. Hui, Pattern code modulation and optical decoding a novel code division multiplexing technique for multifiber networks, IEEE J. Select. Areas Commun., 3 (1985), 916-927.  doi: 10.1109/JSAC.1985.1146265.  Google Scholar

[14]

L. JiB. DingX. Wang and G. Ge, Asymptotically optimal optical orthogonal signature pattern codes, IEEE Trans. Inform. Theory, 64 (2018), 5419-5431.  doi: 10.1109/TIT.2017.2787593.  Google Scholar

[15]

J. JiangD. Wu and M. H. Lee, Some infinte classes of optimal $(v, \{3, 4\}, 1, Q)$-OOCs with $Q\in\{\{1/3, 2/3\}, \{2/3, 1/3\}\}$, Graphs Combin., 29 (2013), 1795-1811.  doi: 10.1007/s00373-012-1235-2.  Google Scholar

[16]

K. Kitayama, Novel spatial spread spectrum based fiber optic CDMA networks for image transmission, IEEE J. Select. Areas Commun., 12 (1994), 762-772.  doi: 10.1109/49.286683.  Google Scholar

[17]

W. C. Kwong and G. C. Yang, Double-weight signature pattern codes for multicore-fiber code-division multiple-access networks, IEEE Commun. Lett., 5 (2001), 203-205.  doi: 10.1109/4234.922760.  Google Scholar

[18]

W. Kwong and G. C. Yang, Image transmission in multicore-fiber code-division multiple-access networks, IEEE Commun. Lett., 2 (1998), 285-287.  doi: 10.1109/4234.725225.  Google Scholar

[19]

R. Pan and Y. Chang, A note on difference matrices over non-cyclic finite abelian groups, Discrete Math., 339 (2016), 822-830.  doi: 10.1016/j.disc.2015.10.028.  Google Scholar

[20]

R. Pan and Y. Chang, Combinatorial constructions for maximum optical orthogonal signature pattern codes, Discrete Math., 33 (2013), 2918-2931.  doi: 10.1016/j.disc.2013.09.005.  Google Scholar

[21]

R. Pan and Y. Chang, Determination of the sizes of optimal $(m, n, k, \lambda, k-1)$-OOSPCs for $\lambda = k-1, k$, Discrete Math., 313 (2013), 1327-1337.  doi: 10.1016/j.disc.2013.02.019.  Google Scholar

[22]

R. Pan and Y. Chang, Further results on optimal $(m, n, 4, 1)$ optical orthogonal signature pattern codes (in Chinese), Sci. Sin. Math., 44 (2014), 1141-1152.   Google Scholar

[23]

R. Pan and Y. Chang, $(m, n, 3, 1)$ optical orthogonal signature pattern codes with maximum possible size, IEEE Trans. Inform. Theorey, 61 (2015), 443-461. Google Scholar

[24]

E. ParkA. J. Mendez and E. M. Garmire, Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks, IEEE Photon. Technol. Lett., 4 (1992), 1160-1162.  doi: 10.1109/68.163765.  Google Scholar

[25]

P. R. PrucnalM. A. Santoro and T. R. Fan, Spread spectrum fiberoptic local network using optical processing, IEEE J. Lightwave Technol., LT-4 (1986), 547-554.   Google Scholar

[26]

J. A. Salehi, Emerging optical code-division multiple access communications systems, IEEE Network, 3 (1989), 31-39.  doi: 10.1109/65.21908.  Google Scholar

[27]

M. Sawa, Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4, IEEE Trans. Inform. Theorey, 56 (2010), 3613- = 3620. doi: 10.1109/TIT.2010.2048487.  Google Scholar

[28]

M. Sawa and S. Kageyama, Optimal optical orthogonal signature pattern codes of weight 3, Biom. Lett., 46 (2009), 89-102.   Google Scholar

[29]

S. TamuraS. Nakano and K. Okazaki, Optical codemultiplex transmission by gold sequences, IEEE J. Lightwave Technol., LT-3 (1985), 121-127.   Google Scholar

[30]

D. WuH. ZhaoP. Fan and S. Shinohara, Optimal variable-weight optical orthogonal codes via difference packings, IEEE Trans. Inform. Theorey, 53 (2010), 4053-4060.  doi: 10.1109/TIT.2010.2050927.  Google Scholar

[31]

G. C. Yang, Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements, IEEE Trans. Commun., 44 (1996), 47-55.   Google Scholar

[32]

G. C. Yang and W. C. Kwong, Two-dimensional spatial signature patterns, IEEE Trans. Commun., 44 (1996), 184-191.   Google Scholar

[33]

H. Zhao, New optimal $(v, \{4, 5\}, 1, \{1/2, 1/2\})$-OOCs, J. Guangxi Teachers Edu. University, 28 (2011), 17-22.   Google Scholar

[34]

H. Zhao, On balanced optimal $(18u, \{3, 4\}, 1)$ optical orthogonal codes, J. Combin. Des., 20 (2012), 290-303.  doi: 10.1002/jcd.21303.  Google Scholar

[35]

H. Zhao and R. Qin, Combinatorial constructions for optimal multiple-weight optical orthogonal signature pattern codes, Discrete Math., 339 (2016), 179-193.  doi: 10.1016/j.disc.2015.08.005.  Google Scholar

[36]

H. ZhaoD. Wu and P. Fan, Constructions of optimal variable-weight optical orthogonal codes, J. Combin. Des., 18 (2010), 274-291.  doi: 10.1002/jcd.20246.  Google Scholar

[1]

Cuiling Fan, Koji Momihara. Unified combinatorial constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2014, 8 (1) : 53-66. doi: 10.3934/amc.2014.8.53

[2]

T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451

[3]

Huangsheng Yu, Dianhua Wu, Jinhua Wang. New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes. Advances in Mathematics of Communications, 2016, 10 (4) : 811-823. doi: 10.3934/amc.2016042

[4]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[5]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[6]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[7]

Miquel Oliu-Barton. Asymptotically optimal strategies in repeated games with incomplete information and vanishing weights. Journal of Dynamics & Games, 2019, 6 (4) : 259-275. doi: 10.3934/jdg.2019018

[8]

Yong Xia. Convex hull of the orthogonal similarity set with applications in quadratic assignment problems. Journal of Industrial & Management Optimization, 2013, 9 (3) : 689-701. doi: 10.3934/jimo.2013.9.689

[9]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[10]

Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537

[11]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[12]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[13]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[14]

Zhengchun Zhou, Xiaohu Tang. New nearly optimal codebooks from relative difference sets. Advances in Mathematics of Communications, 2011, 5 (3) : 521-527. doi: 10.3934/amc.2011.5.521

[15]

Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[16]

Pieter Moree. On the distribution of the order over residue classes. Electronic Research Announcements, 2006, 12: 121-128.

[17]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[18]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[19]

K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803

[20]

X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2006, 2 (3) : 287-296. doi: 10.3934/jimo.2006.2.287

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (55)
  • HTML views (331)
  • Cited by (0)

Other articles
by authors

[Back to Top]