
-
Previous Article
Exponential generalised network descriptors
- AMC Home
- This Issue
-
Next Article
More cyclotomic constructions of optimal frequency-hopping sequences
Optimal subspace codes in $ {{\rm{PG}}}(4,q) $
1. | Department of Mathematics, Informatics and Economics, University of Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy |
2. | Dipartimento di Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy |
3. | Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281 - Building S8, 9000 Ghent, Belgium |
We investigate subspace codes whose codewords are subspaces of ${\rm{PG}}(4,q)$ having non-constant dimension. In particular, examples of optimal mixed-dimension subspace codes are provided, showing that $\mathcal{A}_q(5,3) = 2(q^3+1)$.
References:
[1] |
A. Beutelspacher,
Partial spreads in finite projective spaces and partial designs, Math. Z., 145 (1975), 211-229.
doi: 10.1007/BF01215286. |
[2] |
J. D'haeseleer, Subspace Codes en Hun Meetkundige Achtergrond, Master project Ghent University, Academic year 2016-2017. |
[3] |
J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998. |
[4] |
J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Mathematical
Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press,
New York, 1985. |
[5] |
T. Honold, M. Kiermaier and S. Kurz,
Constructions and bounds for mixed–dimension subspace codes, Adv. Math. Commun., 10 (2016), 649-682.
doi: 10.3934/amc.2016033. |
[6] |
T. Honold, M. Kiermaier and S. Kurz,
Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, Contemp. Math., 632 (2015), 157-176.
doi: 10.1090/conm/632/12627. |
show all references
References:
[1] |
A. Beutelspacher,
Partial spreads in finite projective spaces and partial designs, Math. Z., 145 (1975), 211-229.
doi: 10.1007/BF01215286. |
[2] |
J. D'haeseleer, Subspace Codes en Hun Meetkundige Achtergrond, Master project Ghent University, Academic year 2016-2017. |
[3] |
J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998. |
[4] |
J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Mathematical
Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press,
New York, 1985. |
[5] |
T. Honold, M. Kiermaier and S. Kurz,
Constructions and bounds for mixed–dimension subspace codes, Adv. Math. Commun., 10 (2016), 649-682.
doi: 10.3934/amc.2016033. |
[6] |
T. Honold, M. Kiermaier and S. Kurz,
Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, Contemp. Math., 632 (2015), 157-176.
doi: 10.1090/conm/632/12627. |
[1] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[2] |
Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021007 |
[3] |
Heide Gluesing-Luerssen, Carolyn Troha. Construction of subspace codes through linkage. Advances in Mathematics of Communications, 2016, 10 (3) : 525-540. doi: 10.3934/amc.2016023 |
[4] |
Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147 |
[5] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
[6] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[7] |
Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 613-630. doi: 10.3934/amc.2020034 |
[8] |
Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048 |
[9] |
Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033 |
[10] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[11] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[12] |
Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035 |
[13] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[14] |
Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046 |
[15] |
Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485 |
[16] |
Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105 |
[17] |
Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032 |
[18] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[19] |
Pavel I. Etingof. Galois groups and connection matrices of q-difference equations. Electronic Research Announcements, 1995, 1: 1-9. |
[20] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]