Descriptor | $\lambda \in \left\langle 0,1\right\rangle $ | |
Lower bound | Upper bound | |
$mt_{\lambda }^{e}$ | broom (starting vertex) | complete graph * |
$A_n$ | $ (n-1)\lambda $ | |
$Mt_{\lambda }^{e}$ | open problem | broom (starting vertex) |
$B_n$ | ||
$mc_{\lambda }^{e}$ | path (end vertices) | complete graph * |
$\frac{\lambda^D-\lambda}{\lambda -1}$ | $(n-1)\lambda $ | |
$Mc_{\lambda }^{e}$ | open problem | star (center) |
$(n-1)\left[ \lambda +\frac{1}{2}(n-2)\lambda ^{2}\right] $ | ||
$mN_{\lambda }^{e}$ | broom (starting vertex) | vertex-transitive graph |
$C_n$ | $1$ | |
$MN_{\lambda }^{e}$ | vertex-transitive graph | star (center) |
$1$ | $\frac{1}{2}(n-2)\lambda +1$ | |
$m\nu _{\lambda }^{e}$ | broom (starting vertex) | vertex-transitive graph |
$D_n$ | $0$ | |
$M\nu _{\lambda }^{e}$ | vertex-transitive graph | star (center) |
$0$ | $\frac{1}{2}(n-1)(n-2)\lambda ^{2}$ |