[1]
|
W. O. Alltop, Extending t-designs, J. Comb. Theory A, 18 (1975), 177-186.
doi: 10.1016/0097-3165(75)90006-0.
|
[2]
|
E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.
|
[3]
|
A. H. Baartmans, I. Bluskov and V. D. Tonchev, The Preparata codes and a class of 4-designs, J. Combinatorial Designs, 2 (1994), 167-170.
doi: 10.1002/jcd.3180020307.
|
[4]
|
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.
|
[5]
|
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin Heidelberg, 1989.
doi: 10.1007/978-3-642-74341-2.
|
[6]
|
C. Carlet and C. Ding, Nonlinearities of S-boxes, Finite Fields and Their Applications, 13 (2007), 121-135.
doi: 10.1016/j.ffa.2005.07.003.
|
[7]
|
S. Chang and J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.
doi: 10.1007/s10623-017-0442-5.
|
[8]
|
C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, 2nd edition, CRC Press, New York, 2007.
|
[9]
|
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973), 1-97.
|
[10]
|
P. Delsarte, Pairs of vectors in the space of an association scheme, Philips Res. Rep., 32 (1977), 373-411.
|
[11]
|
P. Delsarte and J. J. Seidel, Fisher type inequalities for Euclidean t-designs, Linear Algebra and Its Applications, 114/115 (1989), 213-230.
doi: 10.1016/0024-3795(89)90462-X.
|
[12]
|
C. Ding, A construction of binary linear codes from Boolean functions, Discrete Mathematics, 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029.
|
[13]
|
C. Ding and Z. Zhou, Parameters of 2-designs from some BCH codes, in: Codes, Cryptography and Information Security (eds. S. El Hajji, A. Nitaj and E. M. Souidi), Lecture Notes in Computer Science, Vol. 10194, Springer, (2017), 110–127.
|
[14]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[15]
|
P. Keevash, The existence of designs, arXiv: 1401.3665v2 [math.CO].
|
[16]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
|
[17]
|
L. Teirlinck, Nontrivial t-designs without repeated blocks exist for all t, Discrete Math., 65 (1987), 301-311.
doi: 10.1016/0012-365X(87)90061-6.
|
[18]
|
V. D. Tonchev, A class of Steiner 4-wise balanced designs derived from Preparata codes, J. Combinatorial Designs, 4 (1996), 203-204.
doi: 10.1002/(SICI)1520-6610(1996)4:3<203::AID-JCD3>3.0.CO;2-J.
|
[19]
|
V. D. Tonchev, Codes and designs, in: Handbook of Coding Theory (eds. V. S. Pless and W. C. Huffman), Vol. Ⅱ, Elsevier, Amsterdam, (1998), 1229–1267.
|
[20]
|
V. D. Tonchev, Codes, in Handbook of Combinatorial Designs (eds. C. J. Colbourn and J. H. Dinitz), 2nd edition, CRC Press, New York, (2007), 677–701.
|
[21]
|
T. Wadayama, T. Hada, K. Wakasugi and M. Kasahara, Upper and lower bounds on maximum nonlinearity of n-input m-output Boolean function, Designs, Codes Cryptography, 23 (2001), 23-33.
doi: 10.1023/A:1011207501748.
|