$ i $ | $ q $ | $ k $ | $ d $ | $ n $ | $ t $ | $ n/t $ |
0 | 4 | 2 | 1 | 64 | 12 | 5.33 |
1 | 16 | 2 | 7 | 4096 | 240 | 17.06 |
2 | 256 | 2 | 127 | 16777216 | 65280 | 257.00 |
3 | 65536 | 2 | 32767 | 281474976710656 | 4294901760 | 65537.00 |
Cover-free families are set systems used as solutions for a large variety of problems, and in particular, problems where we deal with $ n $ elements and want to identify $ d $ defective ones among them by performing only $ t $ tests ($ t \leq n $). We are especially interested in cryptographic problems, and we note that some of these problems need cover-free families with an increasing size $ n $. Solutions that propose the increase of $ n $, such as monotone families and nested families, have been recently considered in the literature. In this paper, we propose a generalization that we call embedding families, which allows us to increase both $ n $ and $ d $. We propose constructions of embedding families using polynomials over finite fields embedded via extension fields; we study how different parameter combinations can be used to prioritize increase of $ d $ or of the compression ratio as $ n $ grows. We also provide new constructions for monotone families with improved compression ratio. Finally, we show how to use embedded sequences of orthogonal arrays and packing arrays to build embedding families.
Citation: |
Table 1.
Example of prioritizing
$ i $ | $ q $ | $ k $ | $ d $ | $ n $ | $ t $ | $ n/t $ |
0 | 4 | 2 | 1 | 64 | 12 | 5.33 |
1 | 16 | 2 | 7 | 4096 | 240 | 17.06 |
2 | 256 | 2 | 127 | 16777216 | 65280 | 257.00 |
3 | 65536 | 2 | 32767 | 281474976710656 | 4294901760 | 65537.00 |
Table 2.
Example of prioritizing
$ i $ | $ q $ | $ k $ | $ d $ | $ n $ | $ t $ | $ n/t $ |
0 | 4 | 3 | 1 | 256 | 16 | 16 |
1 | 16 | 3 | 5 | 65536 | 256 | 256 |
2 | 256 | 3 | 85 | 4294967296 | 65536 | 65536 |
3 | 65536 | 3 | 21845 | $ 65536^4 $ | 4294967296 | 4294967296 |
Table 3.
Example of prioritizing ratio increase with fixed
$ i $ | $ q $ | $ k $ | $ d $ | $ n $ | $ t $ | $ n/t $ |
0 | 4 | 1 | 2 | 16 | 12 | 1.33 |
1 | 16 | 7 | 2 | 4294967296 | 240 | 17895697.07 |
2 | 256 | 127 | 2 | $ 256^{128} $ | 65280 | $ 2.75 \times 10^{303} $ |
3 | 65536 | 32767 | 2 | $ 65536^{32768} $ | 4294901760 | $ 6.04 \times 10^{157816} $ |
Table 4.
Example of prioritizing ratio increase with fixed
$ i $ | $ q $ | $ k $ | $ d $ | $ n $ | $ t $ | $ n/t $ |
0 | 4 | 1 | 3 | 16 | 16 | 1 |
1 | 16 | 5 | 3 | 16777216 | 256 | 65536 |
2 | 256 | 85 | 3 | $ 256^{86} $ | 65536 | $ 1.95 \times 10^{202} $ |
3 | 65536 | 21845 | 3 | $ 65536^{21846} $ | 4294967296 | $ 1.54 \times 10^{105211} $ |
Table 5.
Summary of results for
$ k $ | $ d $ | $ \rho(n) $ | Feature | |
Corollary 1 | fixed | $ d \sim \frac{n^{1/(k+1)}}{k} $ | $ n^{1-\frac{2}{k+1}} $ | increasing $ d $ |
Corollary 2 | increasing | fixed | $ \frac{n}{\log n} $ | optimal ratio |
Theorem 3.5 | fixed | fixed | $ n^{1 - \frac{1}{k+1}} $ | monotone |
Table 6.
Compression ratio for
$ q $ | $ k $ | $ d $ | $ n $ | $ t $ | $ \rho(n)=n/t $ |
16 | 1 | 3 | 128 | 64 | 2.00 |
16 | 1 | 4 | 256 | 80 | 3.20 |
16 | 2 | 4 | 512 | 144 | 3.55 |
16 | 2 | 5 | 1024 | 176 | 5.81 |
16 | 2 | 5 | 2048 | 176 | 11.63 |
16 | 2 | 6 | 4096 | 208 | 19.69 |
256 | 2 | 6 | 8192 | 3328 | 2.46 |
256 | 2 | 7 | 16384 | 3840 | 4.26 |
256 | 2 | 7 | 32768 | 3840 | 8.53 |
256 | 2 | 8 | 65536 | 4352 | 15.05 |
256 | 2 | 8 | 131072 | 4352 | 30.11 |
256 | 2 | 9 | 262144 | 4864 | 53.89 |
256 | 2 | 9 | 524288 | 4864 | 107.78 |
256 | 2 | 10 | 1048576 | 5376 | 195.04 |
256 | 2 | 10 | 2097152 | 5376 | 390.09 |
256 | 2 | 11 | 4194304 | 5888 | 712.34 |
256 | 2 | 11 | 8388608 | 5888 | 1424.69 |
256 | 2 | 12 | 16777216 | 6400 | 2621.44 |
256 | 3 | 12 | 33554432 | 9472 | 3542.48 |
256 | 3 | 13 | 67108864 | 10240 | 6553.60 |
256 | 3 | 13 | 134217728 | 10240 | 13107.20 |
[1] |
D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifiably encrypted signatures from bilinear maps, In: Biham E. (eds) Advances in Cryptology – EUROCRYPT 2003. Lecture Notes in Comput. Sci., vol 2656, Springer, Berlin, Heidelberg, 2003, 416–432.
doi: 10.1007/3-540-39200-9_26.![]() ![]() ![]() |
[2] |
K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics, 23 (1952), 426-434.
doi: 10.1214/aoms/1177729387.![]() ![]() ![]() |
[3] |
C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, 2007.
![]() ![]() |
[4] |
D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, World Scientific, 2000.
![]() ![]() |
[5] |
P. Erdös, P. Frankl and Z. Füredi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math., 51 (1985), 79-89.
doi: 10.1007/BF02772959.![]() ![]() ![]() |
[6] |
Z. Füredi, On r-Cover-free Families, J. Combin. Theory Ser. A, 73 (1996), 172-173.
doi: 10.1006/jcta.1996.0012.![]() ![]() ![]() |
[7] |
E. Gafni, J. Staddon and Y. L. Yin, Efficient Methods for Integrating Traceability and Broadcast Encryption, In: Wiener M. (eds) Advances in Cryptology – CRYPTO 1999. Lecture Notes in Comput. Sci., vol 1666, Springer, Berlin, Heidelberg, 1999, 372–387.
doi: 10.1007/3-540-48405-1_24.![]() ![]() |
[8] |
G. Hartung, B. Kaidel, A. Koch, J. Koch and A. Rupp, Fault-tolerant aggregate signatures., In Public-Key Cryptography – PKC 2016. Lecture Notes in Comput. Sci., vol 9614, Springer, Cham, 2016, 331–356.
doi: 10.1007/978-3-662-49384-7_13.![]() ![]() ![]() |
[9] |
T. B. Idalino and L. Moura, Efficient unbounded fault-tolerant aggregate signatures using nested cover-free families, In: Iliopoulos C., Leong H., Sung WK. (eds) Combinatorial Algorithms – IWOCA 2018. Lecture Notes in Comput. Sci., vol 10979, Springer, Cham, 2018, 52–64.
doi: 10.1007/978-3-319-94667-2_5.![]() ![]() ![]() |
[10] |
T. B. Idalino, L. Moura, R. F. Custódio and D. Panario, Locating modifications in signed data for partial data integrity, Inform. Process. Lett., 115 (2015), 731-737.
doi: 10.1016/j.ipl.2015.02.014.![]() ![]() ![]() |
[11] |
K. M. Kim, Perfect Hash Families: Constructions and Applications, Master's thesis, University of Waterloo, 2003.
![]() |
[12] |
P. C. Li, G. H. J. van Rees and R. Wei, Constructions of 2-cover-free families and related separating hash families, J. Combin. Des., 14 (2006), 423-440.
doi: 10.1002/jcd.20109.![]() ![]() ![]() |
[13] |
S. Ling, H. Wang and C. Xing, Cover-Free Families and Their Applications, In: Security in Distributed and Networking Systems, chapter 4, 2007.
![]() |
[14] |
J. Pastuszak, J. Pieprzyk and J. Seberry, Codes identifying bad signature in batches, In: Roy B., Okamoto E. (eds) Progress in Cryptology – INDOCRYPT 2000. Lecture Notes in Comput. Sci., vol 1977, Springer, Berlin, Heidelberg, 2000, 143–154.
doi: 10.1007/3-540-44495-5_13.![]() ![]() ![]() |
[15] |
J. Pieprzyk, H. Wang and C. Xing, Multiple-time signature schemes against adaptive chosen message attacks, In: Matsui M., Zuccherato R.J. (eds) Selected Areas in Cryptography – SAC 2003. Lecture Notes in Comput. Sci., vol 3006, Springer, Berlin, Heidelberg, 2004, 88–100.
doi: 10.1007/978-3-540-24654-1_7.![]() ![]() ![]() |
[16] |
I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, J. Soc. Indust. Appl. Math., 8 (1960), 300-304.
doi: 10.1137/0108018.![]() ![]() ![]() |
[17] |
R. Safavi-Naini and H. Wang, New results on multi-receiver authentication codes, In: Nyberg K. (eds) Advances in Cryptology – EUROCRYPT 1998. Lecture Notes in Comput. Sci., vol 1403, Springer, Berlin, Heidelberg, 1998, 527–541.
doi: 10.1007/BFb0054151.![]() ![]() ![]() |
[18] |
J. N. Staddon, D. R. Stinson and R. Wei, Combinatorial properties of frameproof and traceability codes, IEEE Trans. Inform. Theory, 47 (2001), 1042-1049.
doi: 10.1109/18.915661.![]() ![]() ![]() |
[19] |
B. Stevens and E. Mendelsohn, Packing arrays, Theoret. Comput. Sci., 321 (2004), 25-148.
doi: 10.1016/j.tcs.2003.06.004.![]() ![]() ![]() |
[20] |
D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes and frameproof codes, SIAM J. Discrete Math., 11 (1998), 41-53.
doi: 10.1137/S0895480196304246.![]() ![]() ![]() |
[21] |
D. R. Stinson and R. Wei, Generalized cover-free families, Discrete Math., 279 (2004), 463-477.
doi: 10.1016/S0012-365X(03)00287-5.![]() ![]() ![]() |
[22] |
D. R. Stinson, R. Wei and K. Chen, On generalized separating hash families, J. Combin. Theory Ser. A, 115 (2008), 105-120.
doi: 10.1016/j.jcta.2007.04.005.![]() ![]() ![]() |
[23] |
D. R. Stinson, R. Wei and L. Zhu, New constructions for perfect hash families and related structures using combinatorial designs and codes, J. Combin. Des., 8 (2000), 189-200.
doi: 10.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A.![]() ![]() ![]() |
[24] |
G. M. Zaverucha and D. R. Stinson, Group testing and batch verification, In: Kurosawa K. (eds) Information Theoretic Security – ICITS 2009. Lecture Notes in Comput. Sci., vol 5973, Springer, Berlin, Heidelberg, 2009, 140–157.
doi: 10.1007/978-3-642-14496-7_12.![]() ![]() |
[25] |
G. M. Zaverucha and D. R. Stinson, Short one-time signatures, Adv. Math. Commun., 5 (2011), 473-488.
doi: 10.3934/amc.2011.5.473.![]() ![]() ![]() |
Example of a
Example of a 0-CFF(3; 9), 1-CFF(6; 9) and a 2-CFF(9; 9)
Example of a 4-CFF(81; 729)
Compression ratio for
An SHF(2; 6; 4; {1; 2})