
-
Previous Article
New self-dual and formally self-dual codes from group ring constructions
- AMC Home
- This Issue
- Next Article
Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems
1. | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071 China |
2. | State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China |
Orthogonal sequences can be assigned to a regular tessellation of hexagonal cells, typical for synchronised code-division multiple-access (S-CDMA) systems. In this paper, we first construct a new class of orthogonal sequences with increasing the number of users per cell to be $ 2^{m-2} $ for even number $ m\geq 4 $ (where $ 2^m $ is the length of the sequences). In addition, based on the above construction we construct a family of orthogonal sequences with zero correlation zone property which can be applied to the quasi-synchronous CDMA (QS-CMDA) spread spectrum systems.
References:
[1] |
A. N. Akansu and R. Poluri,
Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications, IEEE Trans. on Signal Processing, 55 (2007), 3800-3806.
doi: 10.1109/TSP.2007.894229. |
[2] |
S. Chee, S. Lee and K. Kim,
Semi-bent functions, Advances in Cryptology-ASIACRYPT'94, 917 (1994), 107-118.
|
[3] |
E. H. Dinan and B. Jabbari,
Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine, 36 (1998), 48-54.
doi: 10.1109/35.714616. |
[4] |
P. Z. Fan, N. Suehiro, N. Kuroyanagi and X. Deng,
Class of binary sequences with zero correlation zone, Electronics Letters, 35 (1999), 777-779.
doi: 10.1049/el:19990567. |
[5] |
A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511841224.![]() ![]() |
[6] |
O. S. Rothaus,
On "bent" functions, Journal of Combinatorial Theory, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[7] |
D. H. Smith, R. P. War and S. Perkins,
Gold codes, Hadamard partitions and the security of CDMA systems, Designs, Codes and Cryptography, 51 (2009), 231-243.
doi: 10.1007/s10623-008-9257-8. |
[8] |
D. H. Smith, F. H. Hunt and S. Perkins,
Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Transactions on Information Theory, 56 (2010), 5757-5761.
doi: 10.1109/TIT.2010.2070310. |
[9] |
X. H. Tang and P. Fan,
Bounds on aperiodic and odd correlations of spreading sequences with low or zero correlation zone, Electronics Letters, 37 (2001), 1201-1202.
doi: 10.1049/el:20010801. |
[10] |
X. Tang and W. H. Mow,
Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications, 24 (2006), 84-93.
|
[11] |
X. H. Tang, P. Z. Fan and J. Lindner,
Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Transactions on Information Theory, 56 (2010), 4038-4045.
doi: 10.1109/TIT.2010.2050796. |
[12] |
K. Yang, Y.-K. Kim and P. V. Kumar,
Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Transactions on Information Theory, 46 (2000), 982-993.
doi: 10.1109/18.841175. |
[13] |
W.-G. Zhang, C.-L. Xie and E. Pasalic,
Large sets of orthogonal sequences suitable for applications in CDMA systems, IEEE Transactions on Information Theory, 62 (2016), 3757-3767.
doi: 10.1109/TIT.2016.2550478. |
[14] |
Z. C. Zhou, D. Zhang, T. Helleseth and J. Wen,
A construction of multiple optimal zcz sequence sets with good cross-correlation, IEEE Transactions on Information Theory, 64 (2018), 1340-1346.
doi: 10.1109/TIT.2017.2756845. |
show all references
References:
[1] |
A. N. Akansu and R. Poluri,
Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications, IEEE Trans. on Signal Processing, 55 (2007), 3800-3806.
doi: 10.1109/TSP.2007.894229. |
[2] |
S. Chee, S. Lee and K. Kim,
Semi-bent functions, Advances in Cryptology-ASIACRYPT'94, 917 (1994), 107-118.
|
[3] |
E. H. Dinan and B. Jabbari,
Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine, 36 (1998), 48-54.
doi: 10.1109/35.714616. |
[4] |
P. Z. Fan, N. Suehiro, N. Kuroyanagi and X. Deng,
Class of binary sequences with zero correlation zone, Electronics Letters, 35 (1999), 777-779.
doi: 10.1049/el:19990567. |
[5] |
A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511841224.![]() ![]() |
[6] |
O. S. Rothaus,
On "bent" functions, Journal of Combinatorial Theory, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[7] |
D. H. Smith, R. P. War and S. Perkins,
Gold codes, Hadamard partitions and the security of CDMA systems, Designs, Codes and Cryptography, 51 (2009), 231-243.
doi: 10.1007/s10623-008-9257-8. |
[8] |
D. H. Smith, F. H. Hunt and S. Perkins,
Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Transactions on Information Theory, 56 (2010), 5757-5761.
doi: 10.1109/TIT.2010.2070310. |
[9] |
X. H. Tang and P. Fan,
Bounds on aperiodic and odd correlations of spreading sequences with low or zero correlation zone, Electronics Letters, 37 (2001), 1201-1202.
doi: 10.1049/el:20010801. |
[10] |
X. Tang and W. H. Mow,
Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications, 24 (2006), 84-93.
|
[11] |
X. H. Tang, P. Z. Fan and J. Lindner,
Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Transactions on Information Theory, 56 (2010), 4038-4045.
doi: 10.1109/TIT.2010.2050796. |
[12] |
K. Yang, Y.-K. Kim and P. V. Kumar,
Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Transactions on Information Theory, 46 (2000), 982-993.
doi: 10.1109/18.841175. |
[13] |
W.-G. Zhang, C.-L. Xie and E. Pasalic,
Large sets of orthogonal sequences suitable for applications in CDMA systems, IEEE Transactions on Information Theory, 62 (2016), 3757-3767.
doi: 10.1109/TIT.2016.2550478. |
[14] |
Z. C. Zhou, D. Zhang, T. Helleseth and J. Wen,
A construction of multiple optimal zcz sequence sets with good cross-correlation, IEEE Transactions on Information Theory, 64 (2018), 1340-1346.
doi: 10.1109/TIT.2017.2756845. |

[1] |
Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026 |
[2] |
Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037 |
[3] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[4] |
Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037 |
[5] |
Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048 |
[6] |
Mariusz Lemańczyk, Clemens Müllner. Automatic sequences are orthogonal to aperiodic multiplicative functions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6877-6918. doi: 10.3934/dcds.2020260 |
[7] |
Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9 |
[8] |
Yu Zhou. On the distribution of auto-correlation value of balanced Boolean functions. Advances in Mathematics of Communications, 2013, 7 (3) : 335-347. doi: 10.3934/amc.2013.7.335 |
[9] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[10] |
Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038 |
[11] |
Claude Carlet, Khoongming Khoo, Chu-Wee Lim, Chuan-Wen Loe. On an improved correlation analysis of stream ciphers using multi-output Boolean functions and the related generalized notion of nonlinearity. Advances in Mathematics of Communications, 2008, 2 (2) : 201-221. doi: 10.3934/amc.2008.2.201 |
[12] |
Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21 |
[13] |
Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027 |
[14] |
Claude Carlet. Parameterization of Boolean functions by vectorial functions and associated constructions. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022013 |
[15] |
Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305 |
[16] |
Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031 |
[17] |
Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061 |
[18] |
Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041 |
[19] |
Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043 |
[20] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]