February  2020, 14(1): 1-9. doi: 10.3934/amc.2020001

Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems

1. 

State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071 China

2. 

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

* Corresponding author: Yujuan Sun

Received  November 2017 Revised  November 2018 Published  August 2019

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant 61672414 and the National Cryptography Development Fund under Grant MMJJ20170113.

Orthogonal sequences can be assigned to a regular tessellation of hexagonal cells, typical for synchronised code-division multiple-access (S-CDMA) systems. In this paper, we first construct a new class of orthogonal sequences with increasing the number of users per cell to be $ 2^{m-2} $ for even number $ m\geq 4 $ (where $ 2^m $ is the length of the sequences). In addition, based on the above construction we construct a family of orthogonal sequences with zero correlation zone property which can be applied to the quasi-synchronous CDMA (QS-CMDA) spread spectrum systems.

Citation: Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 1-9. doi: 10.3934/amc.2020001
References:
[1]

A. N. Akansu and R. Poluri, Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications, IEEE Trans. on Signal Processing, 55 (2007), 3800-3806.  doi: 10.1109/TSP.2007.894229.  Google Scholar

[2]

S. CheeS. Lee and K. Kim, Semi-bent functions, Advances in Cryptology-ASIACRYPT'94, 917 (1994), 107-118.   Google Scholar

[3]

E. H. Dinan and B. Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine, 36 (1998), 48-54.  doi: 10.1109/35.714616.  Google Scholar

[4]

P. Z. FanN. SuehiroN. Kuroyanagi and X. Deng, Class of binary sequences with zero correlation zone, Electronics Letters, 35 (1999), 777-779.  doi: 10.1049/el:19990567.  Google Scholar

[5] A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511841224.  Google Scholar
[6]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[7]

D. H. SmithR. P. War and S. Perkins, Gold codes, Hadamard partitions and the security of CDMA systems, Designs, Codes and Cryptography, 51 (2009), 231-243.  doi: 10.1007/s10623-008-9257-8.  Google Scholar

[8]

D. H. SmithF. H. Hunt and S. Perkins, Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Transactions on Information Theory, 56 (2010), 5757-5761.  doi: 10.1109/TIT.2010.2070310.  Google Scholar

[9]

X. H. Tang and P. Fan, Bounds on aperiodic and odd correlations of spreading sequences with low or zero correlation zone, Electronics Letters, 37 (2001), 1201-1202.  doi: 10.1049/el:20010801.  Google Scholar

[10]

X. Tang and W. H. Mow, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications, 24 (2006), 84-93.   Google Scholar

[11]

X. H. TangP. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Transactions on Information Theory, 56 (2010), 4038-4045.  doi: 10.1109/TIT.2010.2050796.  Google Scholar

[12]

K. YangY.-K. Kim and P. V. Kumar, Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Transactions on Information Theory, 46 (2000), 982-993.  doi: 10.1109/18.841175.  Google Scholar

[13]

W.-G. ZhangC.-L. Xie and E. Pasalic, Large sets of orthogonal sequences suitable for applications in CDMA systems, IEEE Transactions on Information Theory, 62 (2016), 3757-3767.  doi: 10.1109/TIT.2016.2550478.  Google Scholar

[14]

Z. C. ZhouD. ZhangT. Helleseth and J. Wen, A construction of multiple optimal zcz sequence sets with good cross-correlation, IEEE Transactions on Information Theory, 64 (2018), 1340-1346.  doi: 10.1109/TIT.2017.2756845.  Google Scholar

show all references

References:
[1]

A. N. Akansu and R. Poluri, Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications, IEEE Trans. on Signal Processing, 55 (2007), 3800-3806.  doi: 10.1109/TSP.2007.894229.  Google Scholar

[2]

S. CheeS. Lee and K. Kim, Semi-bent functions, Advances in Cryptology-ASIACRYPT'94, 917 (1994), 107-118.   Google Scholar

[3]

E. H. Dinan and B. Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine, 36 (1998), 48-54.  doi: 10.1109/35.714616.  Google Scholar

[4]

P. Z. FanN. SuehiroN. Kuroyanagi and X. Deng, Class of binary sequences with zero correlation zone, Electronics Letters, 35 (1999), 777-779.  doi: 10.1049/el:19990567.  Google Scholar

[5] A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511841224.  Google Scholar
[6]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[7]

D. H. SmithR. P. War and S. Perkins, Gold codes, Hadamard partitions and the security of CDMA systems, Designs, Codes and Cryptography, 51 (2009), 231-243.  doi: 10.1007/s10623-008-9257-8.  Google Scholar

[8]

D. H. SmithF. H. Hunt and S. Perkins, Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Transactions on Information Theory, 56 (2010), 5757-5761.  doi: 10.1109/TIT.2010.2070310.  Google Scholar

[9]

X. H. Tang and P. Fan, Bounds on aperiodic and odd correlations of spreading sequences with low or zero correlation zone, Electronics Letters, 37 (2001), 1201-1202.  doi: 10.1049/el:20010801.  Google Scholar

[10]

X. Tang and W. H. Mow, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications, 24 (2006), 84-93.   Google Scholar

[11]

X. H. TangP. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Transactions on Information Theory, 56 (2010), 4038-4045.  doi: 10.1109/TIT.2010.2050796.  Google Scholar

[12]

K. YangY.-K. Kim and P. V. Kumar, Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Transactions on Information Theory, 46 (2000), 982-993.  doi: 10.1109/18.841175.  Google Scholar

[13]

W.-G. ZhangC.-L. Xie and E. Pasalic, Large sets of orthogonal sequences suitable for applications in CDMA systems, IEEE Transactions on Information Theory, 62 (2016), 3757-3767.  doi: 10.1109/TIT.2016.2550478.  Google Scholar

[14]

Z. C. ZhouD. ZhangT. Helleseth and J. Wen, A construction of multiple optimal zcz sequence sets with good cross-correlation, IEEE Transactions on Information Theory, 64 (2018), 1340-1346.  doi: 10.1109/TIT.2017.2756845.  Google Scholar

Figure 1.  Assignment of orthogonal sets to a lattice of regular hexagonal cells
Table 1.  Orthogonality between $ \overline{f_c} $ and $ \mathcal {H}_{a} $
$ \mathcal {H}_{00} $ $ \mathcal {H}_{10} $ $ \mathcal {H}_{01} $ $ \mathcal {H}_{11} $
$ \overline{f_{00}} $ $ \bot $ $ \bot $ $ \bot $
$ \overline{f_{10}} $ $ \bot $ $ \bot $
$ \overline{f_{01}} $ $ \bot $ $ \bot $
$ \overline{f_{11}} $ $ \bot $ $ \bot $ $ \bot $
$ \mathcal {H}_{00} $ $ \mathcal {H}_{10} $ $ \mathcal {H}_{01} $ $ \mathcal {H}_{11} $
$ \overline{f_{00}} $ $ \bot $ $ \bot $ $ \bot $
$ \overline{f_{10}} $ $ \bot $ $ \bot $
$ \overline{f_{01}} $ $ \bot $ $ \bot $
$ \overline{f_{11}} $ $ \bot $ $ \bot $ $ \bot $
[1]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[4]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[5]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[6]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[7]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (373)
  • HTML views (479)
  • Cited by (0)

Other articles
by authors

[Back to Top]