February  2020, 14(1): 1-9. doi: 10.3934/amc.2020001

Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems

1. 

State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071 China

2. 

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

* Corresponding author: Yujuan Sun

Received  November 2017 Revised  November 2018 Published  August 2019

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant 61672414 and the National Cryptography Development Fund under Grant MMJJ20170113

Orthogonal sequences can be assigned to a regular tessellation of hexagonal cells, typical for synchronised code-division multiple-access (S-CDMA) systems. In this paper, we first construct a new class of orthogonal sequences with increasing the number of users per cell to be $ 2^{m-2} $ for even number $ m\geq 4 $ (where $ 2^m $ is the length of the sequences). In addition, based on the above construction we construct a family of orthogonal sequences with zero correlation zone property which can be applied to the quasi-synchronous CDMA (QS-CMDA) spread spectrum systems.

Citation: Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 1-9. doi: 10.3934/amc.2020001
References:
[1]

A. N. Akansu and R. Poluri, Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications, IEEE Trans. on Signal Processing, 55 (2007), 3800-3806.  doi: 10.1109/TSP.2007.894229.  Google Scholar

[2]

S. CheeS. Lee and K. Kim, Semi-bent functions, Advances in Cryptology-ASIACRYPT'94, 917 (1994), 107-118.   Google Scholar

[3]

E. H. Dinan and B. Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine, 36 (1998), 48-54.  doi: 10.1109/35.714616.  Google Scholar

[4]

P. Z. FanN. SuehiroN. Kuroyanagi and X. Deng, Class of binary sequences with zero correlation zone, Electronics Letters, 35 (1999), 777-779.  doi: 10.1049/el:19990567.  Google Scholar

[5] A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511841224.  Google Scholar
[6]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[7]

D. H. SmithR. P. War and S. Perkins, Gold codes, Hadamard partitions and the security of CDMA systems, Designs, Codes and Cryptography, 51 (2009), 231-243.  doi: 10.1007/s10623-008-9257-8.  Google Scholar

[8]

D. H. SmithF. H. Hunt and S. Perkins, Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Transactions on Information Theory, 56 (2010), 5757-5761.  doi: 10.1109/TIT.2010.2070310.  Google Scholar

[9]

X. H. Tang and P. Fan, Bounds on aperiodic and odd correlations of spreading sequences with low or zero correlation zone, Electronics Letters, 37 (2001), 1201-1202.  doi: 10.1049/el:20010801.  Google Scholar

[10]

X. Tang and W. H. Mow, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications, 24 (2006), 84-93.   Google Scholar

[11]

X. H. TangP. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Transactions on Information Theory, 56 (2010), 4038-4045.  doi: 10.1109/TIT.2010.2050796.  Google Scholar

[12]

K. YangY.-K. Kim and P. V. Kumar, Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Transactions on Information Theory, 46 (2000), 982-993.  doi: 10.1109/18.841175.  Google Scholar

[13]

W.-G. ZhangC.-L. Xie and E. Pasalic, Large sets of orthogonal sequences suitable for applications in CDMA systems, IEEE Transactions on Information Theory, 62 (2016), 3757-3767.  doi: 10.1109/TIT.2016.2550478.  Google Scholar

[14]

Z. C. ZhouD. ZhangT. Helleseth and J. Wen, A construction of multiple optimal zcz sequence sets with good cross-correlation, IEEE Transactions on Information Theory, 64 (2018), 1340-1346.  doi: 10.1109/TIT.2017.2756845.  Google Scholar

show all references

References:
[1]

A. N. Akansu and R. Poluri, Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications, IEEE Trans. on Signal Processing, 55 (2007), 3800-3806.  doi: 10.1109/TSP.2007.894229.  Google Scholar

[2]

S. CheeS. Lee and K. Kim, Semi-bent functions, Advances in Cryptology-ASIACRYPT'94, 917 (1994), 107-118.   Google Scholar

[3]

E. H. Dinan and B. Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine, 36 (1998), 48-54.  doi: 10.1109/35.714616.  Google Scholar

[4]

P. Z. FanN. SuehiroN. Kuroyanagi and X. Deng, Class of binary sequences with zero correlation zone, Electronics Letters, 35 (1999), 777-779.  doi: 10.1049/el:19990567.  Google Scholar

[5] A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511841224.  Google Scholar
[6]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[7]

D. H. SmithR. P. War and S. Perkins, Gold codes, Hadamard partitions and the security of CDMA systems, Designs, Codes and Cryptography, 51 (2009), 231-243.  doi: 10.1007/s10623-008-9257-8.  Google Scholar

[8]

D. H. SmithF. H. Hunt and S. Perkins, Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Transactions on Information Theory, 56 (2010), 5757-5761.  doi: 10.1109/TIT.2010.2070310.  Google Scholar

[9]

X. H. Tang and P. Fan, Bounds on aperiodic and odd correlations of spreading sequences with low or zero correlation zone, Electronics Letters, 37 (2001), 1201-1202.  doi: 10.1049/el:20010801.  Google Scholar

[10]

X. Tang and W. H. Mow, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications, 24 (2006), 84-93.   Google Scholar

[11]

X. H. TangP. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Transactions on Information Theory, 56 (2010), 4038-4045.  doi: 10.1109/TIT.2010.2050796.  Google Scholar

[12]

K. YangY.-K. Kim and P. V. Kumar, Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Transactions on Information Theory, 46 (2000), 982-993.  doi: 10.1109/18.841175.  Google Scholar

[13]

W.-G. ZhangC.-L. Xie and E. Pasalic, Large sets of orthogonal sequences suitable for applications in CDMA systems, IEEE Transactions on Information Theory, 62 (2016), 3757-3767.  doi: 10.1109/TIT.2016.2550478.  Google Scholar

[14]

Z. C. ZhouD. ZhangT. Helleseth and J. Wen, A construction of multiple optimal zcz sequence sets with good cross-correlation, IEEE Transactions on Information Theory, 64 (2018), 1340-1346.  doi: 10.1109/TIT.2017.2756845.  Google Scholar

Figure 1.  Assignment of orthogonal sets to a lattice of regular hexagonal cells
Table 1.  Orthogonality between $ \overline{f_c} $ and $ \mathcal {H}_{a} $
$ \mathcal {H}_{00} $ $ \mathcal {H}_{10} $ $ \mathcal {H}_{01} $ $ \mathcal {H}_{11} $
$ \overline{f_{00}} $ $ \bot $ $ \bot $ $ \bot $
$ \overline{f_{10}} $ $ \bot $ $ \bot $
$ \overline{f_{01}} $ $ \bot $ $ \bot $
$ \overline{f_{11}} $ $ \bot $ $ \bot $ $ \bot $
$ \mathcal {H}_{00} $ $ \mathcal {H}_{10} $ $ \mathcal {H}_{01} $ $ \mathcal {H}_{11} $
$ \overline{f_{00}} $ $ \bot $ $ \bot $ $ \bot $
$ \overline{f_{10}} $ $ \bot $ $ \bot $
$ \overline{f_{01}} $ $ \bot $ $ \bot $
$ \overline{f_{11}} $ $ \bot $ $ \bot $ $ \bot $
[1]

Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026

[2]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[3]

Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048

[4]

Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037

[5]

Yu Zhou. On the distribution of auto-correlation value of balanced Boolean functions. Advances in Mathematics of Communications, 2013, 7 (3) : 335-347. doi: 10.3934/amc.2013.7.335

[6]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[7]

Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038

[8]

Claude Carlet, Khoongming Khoo, Chu-Wee Lim, Chuan-Wen Loe. On an improved correlation analysis of stream ciphers using multi-output Boolean functions and the related generalized notion of nonlinearity. Advances in Mathematics of Communications, 2008, 2 (2) : 201-221. doi: 10.3934/amc.2008.2.201

[9]

Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21

[10]

Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061

[11]

Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031

[12]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[13]

Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305

[14]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[15]

Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043

[16]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[17]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[18]

Kanat Abdukhalikov, Sihem Mesnager. Explicit constructions of bent functions from pseudo-planar functions. Advances in Mathematics of Communications, 2017, 11 (2) : 293-299. doi: 10.3934/amc.2017021

[19]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019098

[20]

Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421

2018 Impact Factor: 0.879

Article outline

Figures and Tables

[Back to Top]