• Previous Article
    A construction of bent functions with optimal algebraic degree and large symmetric group
  • AMC Home
  • This Issue
  • Next Article
    Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems
February  2020, 14(1): 11-22. doi: 10.3934/amc.2020002

New self-dual and formally self-dual codes from group ring constructions

1. 

Department of Mathematics, University of Scranton, Scranton, PA 18510, USA

2. 

Department of Mathematics, University of Chester, Chester, UK

3. 

Department of Mathematics Education, Sampoerna University, 12780, Jakarta, Indonesia

4. 

Department of Mathematics & Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA

* Corresponding author: Bahattin Yildiz

Received  January 2018 Revised  February 2019 Published  August 2019

In this work, we study construction methods for self-dual and formally self-dual codes from group rings, arising from the cyclic group, the dihedral group, the dicyclic group and the semi-dihedral group. Using these constructions over the rings $ \mathbb{F}_2+u \mathbb{F}_2 $ and $ \mathbb{F}_4+u \mathbb{F}_4 $, we obtain 9 new extremal binary self-dual codes of length 68 and 25 even formally self-dual codes with parameters $ [72,36,14] $.

Citation: Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002
References:
[1]

D. AnevM. Harada and N. Yankov, New extremal singly even self-dual codes of lengths 64 and 66, J. Algebra Comb. Discrete Appl., 5 (2018), 143-151.  doi: 10.13069/jacodesmath.458601.

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[3]

A. Bovdi and C. A. Szakács, Unitary Subgroup of the group of units of a modular group algebra of a finite abelian $p$-group, Math. Zametki, 45 (1989), 23-29. 

[4]

V. Bovdi and A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Comm. Algebra, 28 (2000), 1897-1905.  doi: 10.1080/00927870008826934.

[5]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order $2$, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimum distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.

[7]

P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication. Pure and Applied Mathematics. John Wiley & Sons, New York-Chichester-Brisbane, 1979.

[8]

S. T. DoughertyJ.-L. KimH. Kulosman and H. W. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.

[9]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylyshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Crypt., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.

[10]

S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their Binary Images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.

[11]

S. T. DoughertyS. Karadeniz and B. Yildiz, Cyclic codes over $R_k$, Des. Codes Crypt., 63 (2012), 113-126.  doi: 10.1007/s10623-011-9539-4.

[12]

S. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-dual codes, Eur. J. Pure and Applied Math., 6 (2013), 89-106. 

[13]

Binary Generator Matrices of New Extremal Binary Self-Dual Codes of Length 68, Available from: http://www.abidinkaya.wix.com/math/research4.

[14]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.

[15]

T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335. 

[16]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.

[17]

A. Kaya and B. Yildiz, Constructing formally self-dual codes from block $\lambda$-circulant matrices, Math. Commun., 24 (2019), 91-105. 

[18]

J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555-575.  doi: 10.1353/ajm.1999.0024.

show all references

References:
[1]

D. AnevM. Harada and N. Yankov, New extremal singly even self-dual codes of lengths 64 and 66, J. Algebra Comb. Discrete Appl., 5 (2018), 143-151.  doi: 10.13069/jacodesmath.458601.

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[3]

A. Bovdi and C. A. Szakács, Unitary Subgroup of the group of units of a modular group algebra of a finite abelian $p$-group, Math. Zametki, 45 (1989), 23-29. 

[4]

V. Bovdi and A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Comm. Algebra, 28 (2000), 1897-1905.  doi: 10.1080/00927870008826934.

[5]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order $2$, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimum distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.

[7]

P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication. Pure and Applied Mathematics. John Wiley & Sons, New York-Chichester-Brisbane, 1979.

[8]

S. T. DoughertyJ.-L. KimH. Kulosman and H. W. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.

[9]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylyshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Crypt., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.

[10]

S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their Binary Images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.

[11]

S. T. DoughertyS. Karadeniz and B. Yildiz, Cyclic codes over $R_k$, Des. Codes Crypt., 63 (2012), 113-126.  doi: 10.1007/s10623-011-9539-4.

[12]

S. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-dual codes, Eur. J. Pure and Applied Math., 6 (2013), 89-106. 

[13]

Binary Generator Matrices of New Extremal Binary Self-Dual Codes of Length 68, Available from: http://www.abidinkaya.wix.com/math/research4.

[14]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.

[15]

T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335. 

[16]

A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.

[17]

A. Kaya and B. Yildiz, Constructing formally self-dual codes from block $\lambda$-circulant matrices, Math. Commun., 24 (2019), 91-105. 

[18]

J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555-575.  doi: 10.1353/ajm.1999.0024.

Table 1.  $ \left[ 64,32,12\right] _{2} $ codes via $ C_{mn} $ with $ m = 4,n = 2 $ over $ \mathbb{F}_{4}+u\mathbb{F}_{4} $
$ \mathcal{C}_{64,i} $ $ r_{A_{1}} $ $ r_{A_{2}} $ $ |Aut(\mathcal{C}_{i})| $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,1} $ $ \left( B,4,6,2\right) $ $ \left( E,9,7,0\right) $ $ 2^{6} $ 0
$ \mathcal{C}_{64,2} $ $ \left( B,6,6,0\right) $ $ \left( E,3,5,8\right) $ $ 2^{5} $ 4
$ \mathcal{C}_{64,3} $ $ \left( 9,E,E,0\right) $ $ \left( 6,9,3,A\right) $ $ 2^{5} $ 12
$ \mathcal{C}_{64,4} $ $ \left( B,4,C,A\right) $ $ \left( 6,B,D,0\right) $ $ 2^{5} $ 16
$ \mathcal{C}_{64,5} $ $ \left( 3,6,E,0\right) $ $ \left( E,B,F,A\right) $ $ 2^{5} $ 20
$ \mathcal{C}_{64,6} $ $ \left( 1,E,6,0\right) $ $ \left( C,9,D,8\right) $ $ 2^{5} $ 36
$ \mathcal{C}_{64,7} $ $ \left( 9,C,E,2\right) $ $ \left( C,9,D,8\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,8} $ $ \left( 3,6,4,8\right) $ $ \left( E,B,F,A\right) $ $ 2^{5} $ 52
$ \mathcal{C}_{64,i} $ $ r_{A_{1}} $ $ r_{A_{2}} $ $ |Aut(\mathcal{C}_{i})| $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,1} $ $ \left( B,4,6,2\right) $ $ \left( E,9,7,0\right) $ $ 2^{6} $ 0
$ \mathcal{C}_{64,2} $ $ \left( B,6,6,0\right) $ $ \left( E,3,5,8\right) $ $ 2^{5} $ 4
$ \mathcal{C}_{64,3} $ $ \left( 9,E,E,0\right) $ $ \left( 6,9,3,A\right) $ $ 2^{5} $ 12
$ \mathcal{C}_{64,4} $ $ \left( B,4,C,A\right) $ $ \left( 6,B,D,0\right) $ $ 2^{5} $ 16
$ \mathcal{C}_{64,5} $ $ \left( 3,6,E,0\right) $ $ \left( E,B,F,A\right) $ $ 2^{5} $ 20
$ \mathcal{C}_{64,6} $ $ \left( 1,E,6,0\right) $ $ \left( C,9,D,8\right) $ $ 2^{5} $ 36
$ \mathcal{C}_{64,7} $ $ \left( 9,C,E,2\right) $ $ \left( C,9,D,8\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,8} $ $ \left( 3,6,4,8\right) $ $ \left( E,B,F,A\right) $ $ 2^{5} $ 52
Table 2.  $ \left[ 64,32,12\right] _{2} $ codes via $ C_{mn} $ $ \ $with $ m = 2,n = 4 $ over $ \mathbb{F}_{4}+u\mathbb{F}_{4} $
$ \mathcal{C}_{64,i} $ $ r_{A_{1}} $ $ r_{A_{2}} $ $ r_{A_{3}} $ $ r_{A_{4}} $ $ |Aut(\mathcal{C}_{64,i})| $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,9} $ $ \left( D,6\right) $ $ \left( 8,F\right) $ $ \left( B,0\right) $ $ \left( 4,A\right) $ $ 2^{6} $ 0
$ \mathcal{C}_{64,10} $ $ \left( D,6\right) $ $ \left( 8,F\right) $ $ \left( B,0\right) $ $ \left( 6,8\right) $ $ 2^{5} $ 4
$ \mathcal{C}_{64,11} $ $ \left( 7,4\right) $ $ \left( E,0\right) $ $ \left( 8,B\right) $ $ \left( 1,6\right) $ $ 2^{5} $ 12
$ \mathcal{C}_{64,12} $ $ \left( 4,A\right) $ $ \left( 0,B\right) $ $ \left( C,B\right) $ $ \left( 6,D\right) $ $ 2^{5} $ 16
$ \mathcal{C}_{64,13} $ $ \left( D,C\right) $ $ \left( 4,2\right) $ $ \left( 8,9\right) $ $ \left( 1,C\right) $ $ 2^{5} $ 20
$ \mathcal{C}_{64,14} $ $ \left( D,4\right) $ $ \left( 6,8\right) $ $ \left( A,3\right) $ $ \left( 3,4\right) $ $ 2^{5} $ 28
$ \mathcal{C}_{64,15} $ $ \left( F,4\right) $ $ \left( 8,5\right) $ $ \left( 9,2\right) $ $ \left( C,A\right) $ $ 2^{6} $ 32
$ \mathcal{C}_{64,16} $ $ \left( 5,6\right) $ $ \left( C,2\right) $ $ \left( A,9\right) $ $ \left( 3,4\right) $ $ 2^{5} $ 36
$ \mathcal{C}_{64,17} $ $ \left( 5,E\right) $ $ \left( C,A\right) $ $ \left( 8,3\right) $ $ \left( 3,E\right) $ $ 2^{5} $ 44
$ \mathcal{C}_{64,18} $ $ \left( 8,9\right) $ $ \left( D,A\right) $ $ \left( C,D\right) $ $ \left( D,3\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,19} $ $ \left( D,C\right) $ $ \left( E,0\right) $ $ \left( 8,9\right) $ $ \left( 9,E\right) $ $ 2^{5} $ 52
$ \mathcal{C}_{64,i} $ $ r_{A_{1}} $ $ r_{A_{2}} $ $ r_{A_{3}} $ $ r_{A_{4}} $ $ |Aut(\mathcal{C}_{64,i})| $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,9} $ $ \left( D,6\right) $ $ \left( 8,F\right) $ $ \left( B,0\right) $ $ \left( 4,A\right) $ $ 2^{6} $ 0
$ \mathcal{C}_{64,10} $ $ \left( D,6\right) $ $ \left( 8,F\right) $ $ \left( B,0\right) $ $ \left( 6,8\right) $ $ 2^{5} $ 4
$ \mathcal{C}_{64,11} $ $ \left( 7,4\right) $ $ \left( E,0\right) $ $ \left( 8,B\right) $ $ \left( 1,6\right) $ $ 2^{5} $ 12
$ \mathcal{C}_{64,12} $ $ \left( 4,A\right) $ $ \left( 0,B\right) $ $ \left( C,B\right) $ $ \left( 6,D\right) $ $ 2^{5} $ 16
$ \mathcal{C}_{64,13} $ $ \left( D,C\right) $ $ \left( 4,2\right) $ $ \left( 8,9\right) $ $ \left( 1,C\right) $ $ 2^{5} $ 20
$ \mathcal{C}_{64,14} $ $ \left( D,4\right) $ $ \left( 6,8\right) $ $ \left( A,3\right) $ $ \left( 3,4\right) $ $ 2^{5} $ 28
$ \mathcal{C}_{64,15} $ $ \left( F,4\right) $ $ \left( 8,5\right) $ $ \left( 9,2\right) $ $ \left( C,A\right) $ $ 2^{6} $ 32
$ \mathcal{C}_{64,16} $ $ \left( 5,6\right) $ $ \left( C,2\right) $ $ \left( A,9\right) $ $ \left( 3,4\right) $ $ 2^{5} $ 36
$ \mathcal{C}_{64,17} $ $ \left( 5,E\right) $ $ \left( C,A\right) $ $ \left( 8,3\right) $ $ \left( 3,E\right) $ $ 2^{5} $ 44
$ \mathcal{C}_{64,18} $ $ \left( 8,9\right) $ $ \left( D,A\right) $ $ \left( C,D\right) $ $ \left( D,3\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,19} $ $ \left( D,C\right) $ $ \left( E,0\right) $ $ \left( 8,9\right) $ $ \left( 9,E\right) $ $ 2^{5} $ 52
Table 3.  $ \left[ 64,32,12\right] _{2} $ codes via $ D_{8} $ over $ \mathbb{F} _{4}+u\mathbb{F}_{4} $
$ \mathcal{C}_{64,i} $ $ r_{A} $ $ r_{B} $ $ \left\vert Aut\left( \mathcal{C} _{64,i}\right) \right\vert $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,20} $ $ \left( 6,D,7,E\right) $ $ \left( 2,2,4,5\right) $ $ 2^{6} $ 0
$ \mathcal{C}_{64,21} $ $ \left( C,5,F,4\right) $ $ \left( 2,0,C,D\right) $ $ 2^{5} $ 4
$ \mathcal{C}_{64,22} $ $ \left( 0,C,8,8\right) $ $ \left( 9,A,B,D\right) $ $ 2^{5} $ 8
$ \mathcal{C}_{64,23} $ $ \left( 4,B,A,4\right) $ $ \left( E,D,5,C\right) $ $ 2^{4} $ 12
$ \mathcal{C}_{64,24} $ $ \left( F,8,5,E\right) $ $ \left( A,1,D,9\right) $ $ 2^{4} $ 16
$ \mathcal{C}_{64,25} $ $ \left( 6,4,9,2\right) $ $ \left( 7,C,C,F\right) $ $ 2^{4} $ 20
$ \mathcal{C}_{64,26} $ $ \left( E,3,B,1\right) $ $ \left( 0,7,8,1\right) $ $ 2^{5} $ 24
$ \mathcal{C}_{64,27} $ $ \left( 9,9,8,0\right) $ $ \left( 6,6,1,2\right) $ $ 2^{4} $ 28
$ \mathcal{C}_{64,28} $ $ \left( 7,0,A,8\right) $ $ \left( F,8,5,C\right) $ $ 2^{6} $ 32
$ \mathcal{C}_{64,29} $ $ \left( 6,7,7,6\right) $ $ \left( A,2,4,5\right) $ $ 2^{4} $ $ 36 $
$ \mathcal{C}_{64,30} $ $ \left( 0,6,8,2\right) $ $ \left( 6,3,1,1\right) $ $ 2^{5} $ 40
$ \mathcal{C}_{64,31} $ $ \left( 5,F,E,E\right) $ $ \left( 4,1,0,C\right) $ $ 2^{4}\times 3 $ 44
$ \mathcal{C}_{64,32} $ $ \left( F,F,6,6\right) $ $ \left( 4,3,A,4\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,33} $ $ \left( D,D,4,4\right) $ $ \left( 6,B,0,6\right) $ $ 2^{5} $ 52
$ \mathcal{C}_{64,i} $ $ r_{A} $ $ r_{B} $ $ \left\vert Aut\left( \mathcal{C} _{64,i}\right) \right\vert $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,20} $ $ \left( 6,D,7,E\right) $ $ \left( 2,2,4,5\right) $ $ 2^{6} $ 0
$ \mathcal{C}_{64,21} $ $ \left( C,5,F,4\right) $ $ \left( 2,0,C,D\right) $ $ 2^{5} $ 4
$ \mathcal{C}_{64,22} $ $ \left( 0,C,8,8\right) $ $ \left( 9,A,B,D\right) $ $ 2^{5} $ 8
$ \mathcal{C}_{64,23} $ $ \left( 4,B,A,4\right) $ $ \left( E,D,5,C\right) $ $ 2^{4} $ 12
$ \mathcal{C}_{64,24} $ $ \left( F,8,5,E\right) $ $ \left( A,1,D,9\right) $ $ 2^{4} $ 16
$ \mathcal{C}_{64,25} $ $ \left( 6,4,9,2\right) $ $ \left( 7,C,C,F\right) $ $ 2^{4} $ 20
$ \mathcal{C}_{64,26} $ $ \left( E,3,B,1\right) $ $ \left( 0,7,8,1\right) $ $ 2^{5} $ 24
$ \mathcal{C}_{64,27} $ $ \left( 9,9,8,0\right) $ $ \left( 6,6,1,2\right) $ $ 2^{4} $ 28
$ \mathcal{C}_{64,28} $ $ \left( 7,0,A,8\right) $ $ \left( F,8,5,C\right) $ $ 2^{6} $ 32
$ \mathcal{C}_{64,29} $ $ \left( 6,7,7,6\right) $ $ \left( A,2,4,5\right) $ $ 2^{4} $ $ 36 $
$ \mathcal{C}_{64,30} $ $ \left( 0,6,8,2\right) $ $ \left( 6,3,1,1\right) $ $ 2^{5} $ 40
$ \mathcal{C}_{64,31} $ $ \left( 5,F,E,E\right) $ $ \left( 4,1,0,C\right) $ $ 2^{4}\times 3 $ 44
$ \mathcal{C}_{64,32} $ $ \left( F,F,6,6\right) $ $ \left( 4,3,A,4\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,33} $ $ \left( D,D,4,4\right) $ $ \left( 6,B,0,6\right) $ $ 2^{5} $ 52
Table 4.  $ \left[ 64,32,12\right] _{2} $ codes via $ D_{16} $ over $ \mathbb{F} _{2}+u\mathbb{F}_{2} $
$ \mathcal{C}_{64,i} $ $ r_{A} $ $ r_{B} $ $ \left\vert Aut\left( \mathcal{C} _{64,i}\right) \right\vert $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,34} $ $ \left( 03331uu0\right) $ $ \left( 0003u013\right) $ $ 2^{5} $ 0
$ \mathcal{C}_{64,35} $ $ \left( 3031u110\right) $ $ \left( 0u30100u\right) $ $ 2^{5} $ 16
$ \mathcal{C}_{64,36} $ $ \left( 031u13uu\right) $ $ \left( u01001u1\right) $ $ 2^{5} $ 32
$ \mathcal{C}_{64,37} $ $ \left( 11013uu3\right) $ $ \left( u003111u\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,38} $ $ \left( 3u13u130\right) $ $ \left( 0u301u0u\right) $ $ 2^{7} $ $ 80 $
$ \mathcal{C}_{64,i} $ $ r_{A} $ $ r_{B} $ $ \left\vert Aut\left( \mathcal{C} _{64,i}\right) \right\vert $ $ \beta $ in $ W_{64,2} $
$ \mathcal{C}_{64,34} $ $ \left( 03331uu0\right) $ $ \left( 0003u013\right) $ $ 2^{5} $ 0
$ \mathcal{C}_{64,35} $ $ \left( 3031u110\right) $ $ \left( 0u30100u\right) $ $ 2^{5} $ 16
$ \mathcal{C}_{64,36} $ $ \left( 031u13uu\right) $ $ \left( u01001u1\right) $ $ 2^{5} $ 32
$ \mathcal{C}_{64,37} $ $ \left( 11013uu3\right) $ $ \left( u003111u\right) $ $ 2^{5} $ 48
$ \mathcal{C}_{64,38} $ $ \left( 3u13u130\right) $ $ \left( 0u301u0u\right) $ $ 2^{7} $ $ 80 $
Table 5.  New extremal binary self-dual codes of length $ 68 $
$ \mathcal{C}_{68,i} $ $ \mathcal{C} $ $ c $ $ X $ $ \gamma $ $ \beta $
$ \mathcal{C}_{68,1} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( uu0u33131u1333130u30uu3130113133\right) $ $ 3 $ $ 135 $
$ \mathcal{C}_{68,2} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( 00u013331u1131310u30u0111u331313\right) $ $ 3 $ $ 139 $
$ \mathcal{C}_{68,3} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( uu0u33333u131133003u0u113u131331\right) $ $ 3 $ $ 143 $
$ \mathcal{C}_{68,4} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( uu0011133u311331uu1u0u3110113111\right) $ $ 3 $ $ 151 $
$ \mathcal{C}_{68,5} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( u0uu333310311331uu30u0331u331113\right) $ $ 3 $ $ 155 $
$ \mathcal{C}_{68,6} $ $ \mathcal{C}_{64,29} $ $ 1 $ $ \left( u0u011131u1311110u30u03110113111\right) $ $ 3 $ $ 161 $
$ \mathcal{C}_{68,7} $ $ \mathcal{C}_{64,38} $ $ 1+u $ $ \left( 33131u0101333uu103310030uu11uu13\right) $ $ 3 $ $ 186 $
$ \mathcal{C}_{68,8} $ $ \mathcal{C}_{64,38} $ $ 1 $ $ \left( 13131uuu0u0u3033u1u130100310u1u0\right) $ $ 3 $ $ 202 $
$ \mathcal{C}_{68,9} $ $ \mathcal{C}_{64,38} $ $ 1 $ $ \left( 133330u301331uu30311003uu0130011\right) $ $ 3 $ $ 204 $
$ \mathcal{C}_{68,i} $ $ \mathcal{C} $ $ c $ $ X $ $ \gamma $ $ \beta $
$ \mathcal{C}_{68,1} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( uu0u33131u1333130u30uu3130113133\right) $ $ 3 $ $ 135 $
$ \mathcal{C}_{68,2} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( 00u013331u1131310u30u0111u331313\right) $ $ 3 $ $ 139 $
$ \mathcal{C}_{68,3} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( uu0u33333u131133003u0u113u131331\right) $ $ 3 $ $ 143 $
$ \mathcal{C}_{68,4} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( uu0011133u311331uu1u0u3110113111\right) $ $ 3 $ $ 151 $
$ \mathcal{C}_{68,5} $ $ \mathcal{C}_{64,29} $ $ 1+u $ $ \left( u0uu333310311331uu30u0331u331113\right) $ $ 3 $ $ 155 $
$ \mathcal{C}_{68,6} $ $ \mathcal{C}_{64,29} $ $ 1 $ $ \left( u0u011131u1311110u30u03110113111\right) $ $ 3 $ $ 161 $
$ \mathcal{C}_{68,7} $ $ \mathcal{C}_{64,38} $ $ 1+u $ $ \left( 33131u0101333uu103310030uu11uu13\right) $ $ 3 $ $ 186 $
$ \mathcal{C}_{68,8} $ $ \mathcal{C}_{64,38} $ $ 1 $ $ \left( 13131uuu0u0u3033u1u130100310u1u0\right) $ $ 3 $ $ 202 $
$ \mathcal{C}_{68,9} $ $ \mathcal{C}_{64,38} $ $ 1 $ $ \left( 133330u301331uu30311003uu0130011\right) $ $ 3 $ $ 204 $
Table 6.  FSD $ \left[ 72,36,14\right] _{2}^{b-1} $codes by $ C_{mn} $ construction over $ \mathbb{F}_{2}+u\mathbb{F}_{2} $
$ n $ $ m $ $ r_{1},\ldots ,r_{n} $ $ A_{14} $ $ A_{16} $ $ A_{18} $
$ 2 $ $ 9 $ $ 13u10u000,03u100011 $ $ 8820 $ $ 123039 $ $ 1210564 $
$ 2 $ $ 9 $ $ 30u0031uu,10u1u3u3u $ $ 8856 $ $ 122850 $ $ 1210492 $
$ 2 $ $ 9 $ $ u00u31uu1,01uu3u013 $ $ 8784 $ $ 123417 $ $ 1207344 $
$ 2 $ $ 9 $ $ 3031uu10u,300333u30 $ $ 8928 $ $ 122436 $ $ 1210776 $
$ 2 $ $ 9 $ $ uu0003103,300u1303u $ $ 9288 $ $ 120690 $ $ 1208328 $
$ 2 $ $ 9 $ $ 1333u1313,11u3u31uu $ $ 9360 $ $ 119583 $ $ 1216936 $
$ 3 $ $ 6 $ $ 11010u,30u1u0,103u11 $ $ 8820 $ $ 123327 $ $ 1207092 $
$ 3 $ $ 6 $ $ u30u33,333130,0301u3 $ $ 9180 $ $ 121194 $ $ 1209304 $
$ 3 $ $ 6 $ $ 33u101,0u0311,13u1u3 $ $ 9504 $ $ 119151 $ $ 1212760 $
$ 3 $ $ 6 $ $ 3uuu0u,u31u03,10uu13 $ $ 9648 $ $ 118170 $ $ 1215172 $
$ n $ $ m $ $ r_{1},\ldots ,r_{n} $ $ A_{14} $ $ A_{16} $ $ A_{18} $
$ 2 $ $ 9 $ $ 13u10u000,03u100011 $ $ 8820 $ $ 123039 $ $ 1210564 $
$ 2 $ $ 9 $ $ 30u0031uu,10u1u3u3u $ $ 8856 $ $ 122850 $ $ 1210492 $
$ 2 $ $ 9 $ $ u00u31uu1,01uu3u013 $ $ 8784 $ $ 123417 $ $ 1207344 $
$ 2 $ $ 9 $ $ 3031uu10u,300333u30 $ $ 8928 $ $ 122436 $ $ 1210776 $
$ 2 $ $ 9 $ $ uu0003103,300u1303u $ $ 9288 $ $ 120690 $ $ 1208328 $
$ 2 $ $ 9 $ $ 1333u1313,11u3u31uu $ $ 9360 $ $ 119583 $ $ 1216936 $
$ 3 $ $ 6 $ $ 11010u,30u1u0,103u11 $ $ 8820 $ $ 123327 $ $ 1207092 $
$ 3 $ $ 6 $ $ u30u33,333130,0301u3 $ $ 9180 $ $ 121194 $ $ 1209304 $
$ 3 $ $ 6 $ $ 33u101,0u0311,13u1u3 $ $ 9504 $ $ 119151 $ $ 1212760 $
$ 3 $ $ 6 $ $ 3uuu0u,u31u03,10uu13 $ $ 9648 $ $ 118170 $ $ 1215172 $
Table 7.  FSD $ \left[ 72,36,14\right] _{2}^{b-1} $codes by $ C_{mn} $ over $ \mathbb{F}_{2} $
$ n $ $ m $ $ r_{1},\ldots ,r_{n} $ $ A_{14} $ $ A_{16} $ $ A_{18} $
$ 3 $ $ 12 $ $ 000100000010,110001110110,000010011010 $ $ 8496 $ $ 124911 $ $ 1209160 $
$ 3 $ $ 12 $ $ 011110101111,010110100010,101011000100 $ $ 8568 $ $ 124362 $ $ 1211068 $
$ 3 $ $ 12 $ $ 111100000101,100100101100,111000111110 $ $ 9072 $ $ 121653 $ $ 1210816 $
$ 3 $ $ 12 $ $ 100111000011,011000001011,010001011011 $ $ 9144 $ $ 121221 $ $ 1211328 $
$ 3 $ $ 12 $ $ 001110100000,000000111000,110111001000 $ $ 9468 $ $ 119601 $ $ 1209700 $
$ 4 $ $ 9 $ $ 001011011,010011110,001100010,101000011 $ $ 8388 $ $ 125730 $ $ 1206348 $
$ 4 $ $ 9 $ $ 010110011,100110010,101100111,000101011 $ $ 8712 $ $ 123741 $ $ 1209160 $
$ 4 $ $ 9 $ $ 001111011,100100100,010101100,010111000 $ $ 8820 $ $ 123039 $ $ 1210564 $
$ 4 $ $ 9 $ $ 111011010,101110101,111000101,110001001 $ $ 8928 $ $ 122328 $ $ 1212076 $
$ 4 $ $ 9 $ $ 000010001,111001101,101101110,110011100 $ $ 8928 $ $ 122769 $ $ 1206784 $
$ 4 $ $ 9 $ $ 110001100,101110111,001100010,100110110 $ $ 9036 $ $ 121761 $ $ 1211868 $
$ 4 $ $ 9 $ $ 101100101,101110111,010011000,010010110 $ $ 9036 $ $ 121977 $ $ 1208276 $
$ 6 $ $ 6 $ $ 000100,110100,010111,101000,100000,010111 $ $ 8388 $ $ 125973 $ $ 1203436 $
$ 6 $ $ 6 $ $ 001010,011001,110010,111011,010100,110101 $ $ 8784 $ $ 123570 $ $ 1206532 $
$ 6 $ $ 6 $ $ 101001,001110,110110,101000,000110,000100 $ $ 9360 $ $ 120114 $ $ 1210564 $
$ n $ $ m $ $ r_{1},\ldots ,r_{n} $ $ A_{14} $ $ A_{16} $ $ A_{18} $
$ 3 $ $ 12 $ $ 000100000010,110001110110,000010011010 $ $ 8496 $ $ 124911 $ $ 1209160 $
$ 3 $ $ 12 $ $ 011110101111,010110100010,101011000100 $ $ 8568 $ $ 124362 $ $ 1211068 $
$ 3 $ $ 12 $ $ 111100000101,100100101100,111000111110 $ $ 9072 $ $ 121653 $ $ 1210816 $
$ 3 $ $ 12 $ $ 100111000011,011000001011,010001011011 $ $ 9144 $ $ 121221 $ $ 1211328 $
$ 3 $ $ 12 $ $ 001110100000,000000111000,110111001000 $ $ 9468 $ $ 119601 $ $ 1209700 $
$ 4 $ $ 9 $ $ 001011011,010011110,001100010,101000011 $ $ 8388 $ $ 125730 $ $ 1206348 $
$ 4 $ $ 9 $ $ 010110011,100110010,101100111,000101011 $ $ 8712 $ $ 123741 $ $ 1209160 $
$ 4 $ $ 9 $ $ 001111011,100100100,010101100,010111000 $ $ 8820 $ $ 123039 $ $ 1210564 $
$ 4 $ $ 9 $ $ 111011010,101110101,111000101,110001001 $ $ 8928 $ $ 122328 $ $ 1212076 $
$ 4 $ $ 9 $ $ 000010001,111001101,101101110,110011100 $ $ 8928 $ $ 122769 $ $ 1206784 $
$ 4 $ $ 9 $ $ 110001100,101110111,001100010,100110110 $ $ 9036 $ $ 121761 $ $ 1211868 $
$ 4 $ $ 9 $ $ 101100101,101110111,010011000,010010110 $ $ 9036 $ $ 121977 $ $ 1208276 $
$ 6 $ $ 6 $ $ 000100,110100,010111,101000,100000,010111 $ $ 8388 $ $ 125973 $ $ 1203436 $
$ 6 $ $ 6 $ $ 001010,011001,110010,111011,010100,110101 $ $ 8784 $ $ 123570 $ $ 1206532 $
$ 6 $ $ 6 $ $ 101001,001110,110110,101000,000110,000100 $ $ 9360 $ $ 120114 $ $ 1210564 $
[1]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037

[2]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[3]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[4]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[5]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[6]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[7]

Joe Gildea, Abidin Kaya, Adam Michael Roberts, Rhian Taylor, Alexander Tylyshchak. New self-dual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021039

[8]

Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, 2022, 16 (2) : 269-284. doi: 10.3934/amc.2020111

[9]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[10]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[11]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[12]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[13]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[14]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[15]

Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2021070

[16]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[17]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[18]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[19]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[20]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (471)
  • HTML views (452)
  • Cited by (1)

[Back to Top]