February  2020, 14(1): 35-51. doi: 10.3934/amc.2020004

Some generalizations of good integers and their applications in the study of self-dual negacyclic codes

1. 

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

2. 

Algebra and Applications Research Unit, Department of Mathematics, and Statistics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand

3. 

Centre for Advanced Study in Mathematics, Panjab University, Chandigarh-160014, India

* Corresponding author

Received  May 2018 Published  August 2019

Fund Project: S. Jitman was supported by the Thailand Research Fund and Silpakorn University under Research Grant RSA6280042. M. Raka was supported by the Council of Scientific and Industrial Research (CSIR), India, Sanction No. 21(1042)/17/EMR-II.

Good integers introduced in 1997 form an interesting family of integers that has been continuously studied due to their rich number theoretical properties and wide applications. In this paper, we have focused on classes of $ 2^\beta $-good integers, $ 2^\beta $-oddly-good integers, and $ 2^\beta $-evenly-good integers which are generalizations of good integers. Properties of such integers have been given as well as their applications in characterizing and enumerating self-dual negacyclic codes over finite fields. An alternative proof for the characterization of the existence of a self-dual negacyclic code over finite fields has been given in terms of such generalized good integers. A general enumeration formula for the number of self-dual negacyclic codes of length $ n $ over finite fields has been established. For some specific lengths, explicit formulas have been provided as well. Some known results on self-dual negacyclic codes over finite fields can be formalized and viewed as special cases of this work.

Citation: Somphong Jitman, Supawadee Prugsapitak, Madhu Raka. Some generalizations of good integers and their applications in the study of self-dual negacyclic codes. Advances in Mathematics of Communications, 2020, 14 (1) : 35-51. doi: 10.3934/amc.2020004
References:
[1]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.  Google Scholar

[2]

G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.  doi: 10.1016/j.ffa.2012.10.003.  Google Scholar

[3]

T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.  doi: 10.1016/j.ffa.2008.05.004.  Google Scholar

[4]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m} + \mathbb{F}_{p^m} $, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[5]

H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.  doi: 10.1016/j.ffa.2011.07.003.  Google Scholar

[6]

K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields, 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, (2012), 2904–2908. doi: 10.1109/ISIT.2012.6284057.  Google Scholar

[7]

Y. JiaS. Ling and C. P. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 57 (2011), 2243-2251.  doi: 10.1109/TIT.2010.2092415.  Google Scholar

[8]

S. Jitman, Good integers and some applications in coding theory, Cryptogr. Commun., 10 (2018), 685-704.  doi: 10.1007/s12095-017-0255-4.  Google Scholar

[9]

S. JitmanS. LingH. W. Liu and X. L. Xie, Abelian codes in principal ideal group algebras, IEEE Trans. Inform. Theory, 59 (2013), 3046-3058.  doi: 10.1109/TIT.2012.2236383.  Google Scholar

[10]

S. JitmanS. Ling and P. Solé, Hermitian self-dual abelian codes., IEEE Trans. Inf. Theory, 60 (2014), 1496-1507.  doi: 10.1109/TIT.2013.2296495.  Google Scholar

[11]

D. Knee and H. D. Goldman, Quasi-self-reciprocal polynomials and potentially large minimum distance BCH codes, IEEE Trans. Inform. Theory, 15 (1969), 118-121.  doi: 10.1109/tit.1969.1054262.  Google Scholar

[12]

X. L. Li, Repeated-root self-dual negacyclic codes over finite fields, J. Math. Res. Appl., 36 (2016), 275-284.   Google Scholar

[13] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.   Google Scholar
[14]

P. Moree, On the divisors of $a^k+b^k$, Acta Arithmetica, 80 (1997), 197-212.  doi: 10.4064/aa-80-3-197-212.  Google Scholar

[15]

M. B. Nathanson, Elementary Methods in Number Theory, Springer-Verlag, New York, 2000.  Google Scholar

[16]

M. Raka, A class of constacyclic codes over a finite field-II, Indian J. Pure Appl. Math., 46 (2015), 809-825.  doi: 10.1007/s13226-015-0158-z.  Google Scholar

[17]

E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257.  doi: 10.1016/j.ffa.2014.12.008.  Google Scholar

[18]

Y. S. Yang and W. C. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 355-364.  doi: 10.1007/s10623-013-9865-9.  Google Scholar

show all references

References:
[1]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.  doi: 10.1016/j.ffa.2011.09.005.  Google Scholar

[2]

G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.  doi: 10.1016/j.ffa.2012.10.003.  Google Scholar

[3]

T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.  doi: 10.1016/j.ffa.2008.05.004.  Google Scholar

[4]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m} + \mathbb{F}_{p^m} $, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[5]

H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.  doi: 10.1016/j.ffa.2011.07.003.  Google Scholar

[6]

K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields, 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, (2012), 2904–2908. doi: 10.1109/ISIT.2012.6284057.  Google Scholar

[7]

Y. JiaS. Ling and C. P. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 57 (2011), 2243-2251.  doi: 10.1109/TIT.2010.2092415.  Google Scholar

[8]

S. Jitman, Good integers and some applications in coding theory, Cryptogr. Commun., 10 (2018), 685-704.  doi: 10.1007/s12095-017-0255-4.  Google Scholar

[9]

S. JitmanS. LingH. W. Liu and X. L. Xie, Abelian codes in principal ideal group algebras, IEEE Trans. Inform. Theory, 59 (2013), 3046-3058.  doi: 10.1109/TIT.2012.2236383.  Google Scholar

[10]

S. JitmanS. Ling and P. Solé, Hermitian self-dual abelian codes., IEEE Trans. Inf. Theory, 60 (2014), 1496-1507.  doi: 10.1109/TIT.2013.2296495.  Google Scholar

[11]

D. Knee and H. D. Goldman, Quasi-self-reciprocal polynomials and potentially large minimum distance BCH codes, IEEE Trans. Inform. Theory, 15 (1969), 118-121.  doi: 10.1109/tit.1969.1054262.  Google Scholar

[12]

X. L. Li, Repeated-root self-dual negacyclic codes over finite fields, J. Math. Res. Appl., 36 (2016), 275-284.   Google Scholar

[13] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.   Google Scholar
[14]

P. Moree, On the divisors of $a^k+b^k$, Acta Arithmetica, 80 (1997), 197-212.  doi: 10.4064/aa-80-3-197-212.  Google Scholar

[15]

M. B. Nathanson, Elementary Methods in Number Theory, Springer-Verlag, New York, 2000.  Google Scholar

[16]

M. Raka, A class of constacyclic codes over a finite field-II, Indian J. Pure Appl. Math., 46 (2015), 809-825.  doi: 10.1007/s13226-015-0158-z.  Google Scholar

[17]

E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257.  doi: 10.1016/j.ffa.2014.12.008.  Google Scholar

[18]

Y. S. Yang and W. C. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 355-364.  doi: 10.1007/s10623-013-9865-9.  Google Scholar

[1]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[2]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[3]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[4]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[5]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[6]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020023

[7]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[8]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[9]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[10]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[11]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[12]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[13]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[14]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[15]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[16]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[17]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020037

[18]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[19]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[20]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (65)
  • HTML views (144)
  • Cited by (0)

[Back to Top]