[1]
|
N. Aydin and T. Asamov, A Database of $\mathbb{Z}_4$ Codes, Journal of Combinatorics, Information & System Sciences, 34 (2009), 1-12.
|
[2]
|
N. Aydin, A. Dertli and Y. Cengellenmis, Cyclic and constacyclic codes over $\mathbb{Z}_4+w\mathbb{Z}_4$, preprint.
|
[3]
|
N. Aydin, I. Siap and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptogr., 24 (2001), 313-326.
doi: 10.1023/A:1011283523000.
|
[4]
|
V. K. Bhargava, G. E. Séguin and J. M. Stein, Some $(ink, k)$ cyclic codes in quasi-cyclic form, IEEE Trans. Inform. Theory, 24 (1978), 630-632.
doi: 10.1109/TIT.1978.1055930.
|
[5]
|
T. Blackford, Cyclic codes over $Z_4$ of oddly even length, Discrete Applied Mathematics, 128 (2003), 27-46.
doi: 10.1016/S0166-218X(02)00434-1.
|
[6]
|
I. F. Blake, Codes over certain rings, Information and Control, 20 (1972), 396-404.
doi: 10.1016/S0019-9958(72)90223-9.
|
[7]
|
D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, App. Algebra in Eng. Comm. and Comp., 18 (2007), 379-389.
doi: 10.1007/s00200-007-0043-z.
|
[8]
|
D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over galois rings, Advances in Mathematics of Communications, 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273.
|
[9]
|
D. Boucher and F. Ulmer, Codes as modules over skew polynomial rings, Lecture Notes in Computer Science, 5921 (2009), 38-55.
doi: 10.1007/978-3-642-10868-6_3.
|
[10]
|
C. L. Chen, W. W. Peterson and E. J. Weldon, Some results on quasi-cyclic codes, Information and Control, 15 (1969), 407-423.
doi: 10.1016/S0019-9958(69)90497-5.
|
[11]
|
S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, Spinger-Verlag, 2017.
doi: 10.1007/978-3-319-59806-2.
|
[12]
|
S. T. Dougherty, A. Kaya and E. Saltürk, Cyclic codes over local rings of order $16$, Adv. Math. Commun., 11 (2017), 99-114.
doi: 10.3934/amc.2017005.
|
[13]
|
S. T. Dougherty and E. Saltürk, Codes over a family of local Frobenius rings, Gray maps and self-dual codes, Discrete Appl. Math., 217 (2017), 512-524.
doi: 10.1016/j.dam.2016.09.025.
|
[14]
|
S. T. Dougherty and E. Salturk, Constacyclic codes over local rings of order $16$, 2017 (in submission).
|
[15]
|
S. T. Dougherty, E. Saltürk and S. Szabo, On codes over local rings: Generator matrices, generating characters and MacWilliams identities, in Appl. Algebra Engrg. Comm. Comput., 30 (2019), 193-206.
|
[16]
|
S. T. Dougherty, E. Saltürk and S. Szabo, Codes over local rings of order 16 and binary codes, Adv. Math. Commun., 10 (2016), 379-391.
doi: 10.3934/amc.2016012.
|
[17]
|
S. T. Dougherty, B. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.
doi: 10.1016/j.ffa.2010.11.002.
|
[18]
|
S. T. Dougherty, B. Yildiz and S. Karadeniz, Cyclic Codes over $R_k$, Des. Codes Cryptogr., 63 (2012), 113-126.
doi: 10.1007/s10623-011-9539-4.
|
[19]
|
S. T. Dougherty, B. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-Dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89-106.
|
[20]
|
M. Greferath, Cyclic codes over finite rings, Discrete Mathematics, 177 (1997), 273-277.
doi: 10.1016/S0012-365X(97)00006-X.
|
[21]
|
T. A. Gulliver, Construction Of Quasi-Cyclic Codes, Ph. D. Dissertation, University of New Brunswick, 1984.
|
[22]
|
T. A. Gulliver and V. K. Bhargava, A (105, 10, 47) binary quasi-cyclic code, App. Math. Lett., 8 (1995), 67-70.
doi: 10.1016/0893-9659(95)00049-V.
|
[23]
|
S. Ling, H. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅳ: Repeated roots, Des. Codes Cryptogr., 38 (2006), 337-361.
doi: 10.1007/s10623-005-1431-7.
|
[24]
|
S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅱ: Chain rings, Des. Codes Cryptogr., 30 (2003), 113-130.
doi: 10.1023/A:1024715527805.
|
[25]
|
E. Martinez-Moro and S. Szabo, On codes over local Frobenius non-chain rings of order 16, Noncommutative rings and their applications, Contemp. Math., Amer. Math. Soc., Providence, RI, 634 (2015), 227-241.
doi: 10.1090/conm/634/12702.
|
[26]
|
E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center, 1957.
|
[27]
|
J. Wolfmann, Negacyclic and cyclic codes over $\mathbb{Z}_4$, IEEE Trans. Inform. Theory, 45 (1999), 2527-2532.
doi: 10.1109/18.796397.
|
[28]
|
J. Wood, Lecture Notes On Dual Codes And the MacWilliams Identities, Mexico, 2009.
|
[29]
|
J. A. Wood, Duality for modules over finite rings and applications to coding theory, The American Journal of Math., 121 (1999), 555-575.
doi: 10.1353/ajm.1999.0024.
|
[30]
|
Magma computer algebra system, online, http://magma.maths.usyd.edu.au/.
|
[31]
|
, A Database on Binary Quasi-Cyclic Codes, online, Accessed January, 2018, http://www.tec.hkr.se/ chen/research/codes/qc.htm.
|
[32]
|
Code tables: Bounds on the parameters of codes, online, Accessed January, 2018, http://www.codetables.de/.
|
[33]
|
Database of $\mathbb{Z}_4$ codes, online, $Z_4$Codes.info, Accessed February, 2017.
|