\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Skew constacyclic codes over the local Frobenius non-chain rings of order 16

  • * Corresponding author: Steven T. Dougherty

    * Corresponding author: Steven T. Dougherty 

Esengül Saltürk would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their support while writing this paper

Abstract / Introduction Full Text(HTML) Figure(0) / Table(4) Related Papers Cited by
  • We introduce skew constacyclic codes over the local Frobenius non-chain rings of order 16 by defining non-trivial automorphisms on these rings. We study the Gray images of these codes, obtaining a number of binary and quaternary codes with good parameters as images of skew cyclic codes over some of these rings.

    Mathematics Subject Classification: Primary: 11T71; Secondary: 94B15, 13H99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Optimal binary linear codes

    n g(x) or h(x) Binary Parameters
    $ 8 $ $ g=x^2 + ux + 1 $ $ [32,24,4] $
    $ 8 $ $ g=x^4+(uv+u)x^3+(v+u)x^2+ux+1 $ $ [32,16,8] $
    $ 6 $ $ h=x^2+(u+v+1)x + 1 $ $ [24,8,8] $
    $ 6 $ $ h=x+uv+1 $ $ [24,4,12] $
     | Show Table
    DownLoad: CSV

    Table 2.  Best-known binary linear codes

    n g(x) or h(x) Binary Parameters
    $ 12 $ $ h=x^5+(u+v+1)x^4+x^3+x^2+(uv+v+1)x+v+1 $ $ [48,20,12] $
    $ 12 $ $ g=x^4+(uv+u+1)x^3+x+1 $ $ [48,32,6] $
    $ 12 $ $ g=x^5+ux^4+x^3+ (u+v+ 1)x^2+v+1 $ $ [48,28,8] $
    $ 16 $ $ h=x^4+vx^3+ux^2+1 $ $ [64,24,16] $
     | Show Table
    DownLoad: CSV

    Table 3.  New binary QC codes

    n g(x) or h(x) Binary Parameters
    $ 8 $ $ g=x^3+(uv+1)x^2+x+1 $ $ [32,20,4] $
    $ 10 $ $ g=x^4+(u+v+ 1)x^3+x^2+x+1 $ $ [40,24,4] $
    $ 12 $ $ g=x^3+ux^2+1 $ $ [48,36,4] $
    $ 14 $ $ h=x^5+(uv+1)x^4+x^3+uvx^2+1 $ $ [56,20,7] $
    $ 14 $ $ h=x^4+(u+v+1)x^3+x^2+1 $ $ [56,16,12] $
    $ 14 $ $ g=x^3+ (u+v+1)x^2+1 $ $ [56,44,3] $
    $ 14 $ $ h=x^3+ (u+v+1)x^2+1 $ $ [56,12,16] $
    $ 16 $ $ h=x^6+(uv+v+1)x^4+ux^3+x^2+vx+uv+1 $ $ [64,24,16] $
    $ 20 $ $ h=x^4+x^3+(u+1)x^2+x+u+v+1 $ $ [80,16,28] $
    $ 18 $ $ h=x^4+(u+v+1)x^3+(u+v+1)x+1 $ $ [72,16,9] $
    $ 28 $ $ h=x+u+v+1 $ $ [112,4,56] $
    $ 28 $ $ h=x^4+x^2+(u+1)x+(u+1)v+1 $ $ [112,16,40] $
    $ 30 $ $ h= x+uv+1 $ $ [120,4,60] $
    $ 32 $ $ h=x+u+v+1 $ $ [128,4,64] $
    $ 32 $ $ h=x^3+(u+1)x^2+x+1 $ $ [128,12,32] $
     | Show Table
    DownLoad: CSV

    Table 4.  New quaternary codes

    n g(x) or h(x) $ {\mathbb{Z}}_4 $ Parameters
    $ 8 $ $ g=x^3+(u+1)x^2+3x+u+1 $ $ [24,10,9] $
    $ 8 $ $ g=x^2+(3u+2)x+3u+3 $ $ [24,12,7] $
    $ 8 $ $ g=x+u+1 $ $ [16,14,2] $
    $ 12 $ $ g=x^2+(u+3)x+1 $ $ [36,20,8] $
    $ 12 $ $ h=x^4+(3u+1)x^3+(u+2)x^2+(3u+3)x+3u +3 $ $ [24,8,12] $
    $ 12 $ $ h=x^4+(3u+3)x^3+(u+2)x^2+(u+3)x+u+1 $ $ [36,8,20] $
    $ 12 $ $ h=x^5+(2u+1)x^4+3x^3+(2u+1)x^2+3x+1 $ $ [24,10,8] $
    $ 12 $ $ h=x^5+2ux^4+(3u+3)x^3+(2u+3)x^2+(3u+2)x+3 $ $ [36,10,17] $
    $ 12 $ $ g=x^5+3ux^4+x^3+(3u+1)x^2+1 $ $ [36,14,13] $
    $ 14 $ $ h=x^4+(3u+3)x^3+(u+3)x^2+ux+u+1 $ $ [28,8,18] $
    $ 14 $ $ h=x^4+(3u+3)x^3+(u+3)x^2+ux+u+1 $ $ [42,8,26] $
    $ 14 $ $ h=x^3+(u+3)x^2+(3u+2)x+u+1 $ $ [28,6,18] $
    $ 14 $ $ h=x^3+(u+3)x^2+(3u+2)x+u+1 $ $ [42,6,29] $
    $ 14 $ $ g=x^4+(u+3)x^3 + x^2 + (3u + 2)x + 2u+1 $ $ [28,20,6] $
    $ 14 $ $ g=x^4+(u+3)x^3 + x^2 + (3u + 2)x + 2u+1 $ $ [42,20,13] $
    $ 16 $ $ g=x^4 + (u + 2)x^3 + ux^2 + 2x + 1 $ $ [48,24,13] $
    $ 16 $ $ g=x^3+(u+3)x^2+(3u+1)x+3u+3 $ $ [32,26,4] $
    $ 16 $ $ g=x^3+(u+3)x^2+(3u+1)x+3u+3 $ $ [48,26,11] $
    $ 16 $ $ g=x^2+(u+2)x+1 $ $ [32,28,2] $
    $ 16 $ $ g=x^2+(u+2)x+1 $ $ [48,28,9] $
    $ 18 $ $ g=x^4 + (2u + 3)x^3 + ux^2 + (2u + 1)x + 3u + 3 $ $ [54,28,13] $
    $ 18 $ $ g=x^3 + ux^2 + 2x + 1 $ $ [54,30,10] $
    $ 18 $ $ h=x^3+(3u+2)x^2+3ux +2u + 3 $ $ [54,6,34] $
    $ 20 $ $ g=x^4 + 3x^3 + (3u + 1)x^2 + (3u + 1)x + 1 $ $ [60,32,13] $
    $ 20 $ $ g=x^4 + (u + 3)x^3 + x^2 + x + 1 $ $ [40,32,4] $
    $ 20 $ $ g=x^3 + (3u + 3)x^2 + (2u + 1)x + u + 3 $ $ [60,34,12] $
    $ 24 $ $ g=x^3 + 3ux^2 + (u + 2)x + 1 $ $ [48,42,4] $
    $ 24 $ $ g=x^3 + 3ux^2 + (u + 2)x + 1 $ $ [72,42,10] $
    $ 30 $ $ g=x^4 + (u + 1)x^3 + 1 $ $ [60,52,3] $
    $ 30 $ $ g=x^4 + (u + 1)x^3 + 1 $ $ [90,52,8] $
    $ 32 $ $ g=x + u + 1 $ $ [64,62,2] $
    $ 32 $ $ g=x + u + 1 $ $ [96,62,5] $
    $ 32 $ $ h=x^4 + ux^2 + (u + 2)x + 3u + 1 $ $ [96,8,60] $
     | Show Table
    DownLoad: CSV
  • [1] N. Aydin and T. Asamov, A Database of $\mathbb{Z}_4$ Codes, Journal of Combinatorics, Information & System Sciences, 34 (2009), 1-12. 
    [2] N. Aydin, A. Dertli and Y. Cengellenmis, Cyclic and constacyclic codes over $\mathbb{Z}_4+w\mathbb{Z}_4$, preprint.
    [3] N. AydinI. Siap and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptogr., 24 (2001), 313-326.  doi: 10.1023/A:1011283523000.
    [4] V. K. BhargavaG. E. Séguin and J. M. Stein, Some $(ink, k)$ cyclic codes in quasi-cyclic form, IEEE Trans. Inform. Theory, 24 (1978), 630-632.  doi: 10.1109/TIT.1978.1055930.
    [5] T. Blackford, Cyclic codes over $Z_4$ of oddly even length, Discrete Applied Mathematics, 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.
    [6] I. F. Blake, Codes over certain rings, Information and Control, 20 (1972), 396-404.  doi: 10.1016/S0019-9958(72)90223-9.
    [7] D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, App. Algebra in Eng. Comm. and Comp., 18 (2007), 379-389.  doi: 10.1007/s00200-007-0043-z.
    [8] D. BoucherP. Solé and F. Ulmer, Skew constacyclic codes over galois rings, Advances in Mathematics of Communications, 2 (2008), 273-292.  doi: 10.3934/amc.2008.2.273.
    [9] D. Boucher and F. Ulmer, Codes as modules over skew polynomial rings, Lecture Notes in Computer Science, 5921 (2009), 38-55.  doi: 10.1007/978-3-642-10868-6_3.
    [10] C. L. ChenW. W. Peterson and E. J. Weldon, Some results on quasi-cyclic codes, Information and Control, 15 (1969), 407-423.  doi: 10.1016/S0019-9958(69)90497-5.
    [11] S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, Spinger-Verlag, 2017. doi: 10.1007/978-3-319-59806-2.
    [12] S. T. DoughertyA. Kaya and E. Saltürk, Cyclic codes over local rings of order $16$, Adv. Math. Commun., 11 (2017), 99-114.  doi: 10.3934/amc.2017005.
    [13] S. T. Dougherty and E. Saltürk, Codes over a family of local Frobenius rings, Gray maps and self-dual codes, Discrete Appl. Math., 217 (2017), 512-524.  doi: 10.1016/j.dam.2016.09.025.
    [14] S. T. Dougherty and E. Salturk, Constacyclic codes over local rings of order $16$, 2017 (in submission).
    [15] S. T. Dougherty, E. Saltürk and S. Szabo, On codes over local rings: Generator matrices, generating characters and MacWilliams identities, in Appl. Algebra Engrg. Comm. Comput., 30 (2019), 193-206.
    [16] S. T. DoughertyE. Saltürk and S. Szabo, Codes over local rings of order 16 and binary codes, Adv. Math. Commun., 10 (2016), 379-391.  doi: 10.3934/amc.2016012.
    [17] S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.
    [18] S. T. DoughertyB. Yildiz and S. Karadeniz, Cyclic Codes over $R_k$, Des. Codes Cryptogr., 63 (2012), 113-126.  doi: 10.1007/s10623-011-9539-4.
    [19] S. T. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-Dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89-106. 
    [20] M. Greferath, Cyclic codes over finite rings, Discrete Mathematics, 177 (1997), 273-277.  doi: 10.1016/S0012-365X(97)00006-X.
    [21] T. A. Gulliver, Construction Of Quasi-Cyclic Codes, Ph. D. Dissertation, University of New Brunswick, 1984.
    [22] T. A. Gulliver and V. K. Bhargava, A (105, 10, 47) binary quasi-cyclic code, App. Math. Lett., 8 (1995), 67-70.  doi: 10.1016/0893-9659(95)00049-V.
    [23] S. LingH. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅳ: Repeated roots, Des. Codes Cryptogr., 38 (2006), 337-361.  doi: 10.1007/s10623-005-1431-7.
    [24] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅱ: Chain rings, Des. Codes Cryptogr., 30 (2003), 113-130.  doi: 10.1023/A:1024715527805.
    [25] E. Martinez-Moro and S. Szabo, On codes over local Frobenius non-chain rings of order 16, Noncommutative rings and their applications, Contemp. Math., Amer. Math. Soc., Providence, RI, 634 (2015), 227-241. doi: 10.1090/conm/634/12702.
    [26] E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center, 1957.
    [27] J. Wolfmann, Negacyclic and cyclic codes over $\mathbb{Z}_4$, IEEE Trans. Inform. Theory, 45 (1999), 2527-2532.  doi: 10.1109/18.796397.
    [28] J. Wood, Lecture Notes On Dual Codes And the MacWilliams Identities, Mexico, 2009.
    [29] J. A. Wood, Duality for modules over finite rings and applications to coding theory, The American Journal of Math., 121 (1999), 555-575.  doi: 10.1353/ajm.1999.0024.
    [30] Magma computer algebra system, online, http://magma.maths.usyd.edu.au/.
    [31] , A Database on Binary Quasi-Cyclic Codes, online, Accessed January, 2018, http://www.tec.hkr.se/ chen/research/codes/qc.htm.
    [32] Code tables: Bounds on the parameters of codes, online, Accessed January, 2018, http://www.codetables.de/.
    [33] Database of $\mathbb{Z}_4$ codes, online, $Z_4$Codes.info, Accessed February, 2017.
  • 加载中

Tables(4)

SHARE

Article Metrics

HTML views(2465) PDF downloads(733) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return