|
[1]
|
F. Armknecht, Improving fast algebraic attacks, Fast Software Encryption, 3017 (2004), 65-82.
doi: 10.1007/978-3-540-25937-4_5.
|
|
[2]
|
F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier and O. Ruatta, Efficient computation of algebraic immunity for algebraic and fast algebraic attacks, in Advances in Cryptology-EUROCRYPT 2006, Springer, 4004 (2006), 147–164.
doi: 10.1007/11761679_10.
|
|
[3]
|
A. Braeken and B. Preneel, On the algebraic immunity of symmetric Boolean functions, in Progress in Cryptology-INDOCRYPT 2005, Springer, 3797 (2005), 35–48.
doi: 10.1007/11596219_4.
|
|
[4]
|
A. Braeken, Cryptographic Properties of Boolean Functions and S-Boxes, PhD thesis, Catholic University of Louvain, 2006.
|
|
[5]
|
A. Canteaut and M. Videau, Symmetric Boolean functions, IEEE Transactions on Information Theory, 51 (2005), 2791-2811.
doi: 10.1109/TIT.2005.851743.
|
|
[6]
|
C. Carlet, On a weakness of the Tu-Deng function and its repair, IACR Cryptology EPrint Archive, Report 2009/606, URL http://eprint.iacr.org/2009/606.
|
|
[7]
|
C. Carlet and D. Tang, Enhanced Boolean functions suitable for the filter model of pseudo-random generator, Designs, Codes and Cryptography, 76 (2015), 571-587.
doi: 10.1007/s10623-014-9978-9.
|
|
[8]
|
C. Carlet, X. Y. Zeng, C. L. Li and L. Hu, Further properties of several classes of Boolean functions with optimum algebraic immunity, Designs, Codes and Cryptography, 52 (2009), 303-338.
doi: 10.1007/s10623-009-9284-0.
|
|
[9]
|
Y. Chen and P. Lu, Two classes of symmetric Boolean functions with optimum algebraic immunity: Construction and analysis, IEEE transactions on information theory, 57 (2011), 2522-2538.
doi: 10.1109/TIT.2011.2111810.
|
|
[10]
|
N. T. Courtois, Fast algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology-CRYPTO 2003, Springer, 2729 (2003), 176–194.
doi: 10.1007/978-3-540-45146-4_11.
|
|
[11]
|
N. T. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology–EUROCRYPT 2003, Springer, 2656 (2003), 345–359.
doi: 10.1007/3-540-39200-9_21.
|
|
[12]
|
D. K. Dalai, S. Maitra and S. Sarkar, Basic theory in construction of Boolean functions with maximum possible annihilator immunity, Designs, Codes and Cryptography, 40 (2006), 41-58.
doi: 10.1007/s10623-005-6300-x.
|
|
[13]
|
J. F. Dillon, Elementary Hadamard Difference Sets, PhD thesis, Univ. of Maryland, 1974,126 pp.
|
|
[14]
|
C. Ding, G. Xiao and W. Shan, The Stability Theory of Stream Ciphers, Lecture Notes in Computer Science, 561. Springer-Verlag, Berlin, 1991.
doi: 10.1007/3-540-54973-0.
|
|
[15]
|
D. Dong, S. Fu, L. Qu and C. Li, A new construction of Boolean functions with maximum algebraic immunity, in Information Security, Springer, (2009), 177–185.
|
|
[16]
|
K. Q. Feng, F. Liu, L. J. Qu and L. Wang, Constructing symmetric Boolean functions with maximum algebraic immunity, IEEE Transactions on Information Theory, 55 (2009), 2406-2412.
doi: 10.1109/TIT.2009.2015999.
|
|
[17]
|
S. Fu, C. Li, K. Matsuura and L. Qu, Construction of rotation symmetric Boolean functions with maximum algebraic immunity, in Cryptology and Network Security, Springer, (2009), 402–412.
|
|
[18]
|
S. Fu, L. Qu, C. Li and B. Sun, Balanced rotation symmetric Boolean functions with maximum algebraic immunity, IET Information Security, 5 (2011), 93-99.
doi: 10.1049/iet-ifs.2010.0048.
|
|
[19]
|
P. Hawkes and G. G. Rose, Rewriting variables: The complexity of fast algebraic attacks on stream ciphers, in Advances in Cryptology–CRYPTO 2004, Springer, 3152 (2004), 390–406.
doi: 10.1007/978-3-540-28628-8_24.
|
|
[20]
|
N. Li and W.-F. Qi, Construction and analysis of Boolean functions of $2t+1$ variables with maximum algebraic immunity, in Advances in Cryptology–ASIACRYPT 2006, Springer, 4284 (2006), 84–98.
doi: 10.1007/11935230_6.
|
|
[21]
|
M. C. Liu and D. D. Lin, Fast algebraic attacks and decomposition of symmetric Boolean functions, IEEE Trans. Inform. Theory, 57 (2011), 4817–4821, arXiv: 0910.4632.
doi: 10.1109/TIT.2011.2145690.
|
|
[22]
|
M. C. Liu and D. D. Lin, Almost perfect algebraic immune functions with good nonlinearity, in 2014 IEEE International Symposium on Information Theory (ISIT), (2014), 1837–1841.
doi: 10.1109/ISIT.2014.6875151.
|
|
[23]
|
M. C. Liu and D. D. Lin, Results on highly nonlinear boolean functions with provably good immunity to fast algebraic attacks, Information Sciences, 421 (2017), 181–203, URL http://www.sciencedirect.com/science/article/pii/S002002551730926X.
doi: 10.1016/j.ins.2017.08.097.
|
|
[24]
|
M. C. Liu, D. D. Lin and D. Y. Pei, Fast algebraic attacks and decomposition of symmetric Boolean functions, IEEE Transactions on Information Theory, 57 (2011), 4817-4821.
doi: 10.1109/TIT.2011.2145690.
|
|
[25]
|
M. C. Liu, Y. Zhang and D. D. Lin, Perfect algebraic immune functions, in Advances in Cryptology–ASIACRYPT 2012, Springer, 7658 (2012), 172–189.
doi: 10.1007/978-3-642-34961-4_12.
|
|
[26]
|
M. Lobanov, Tight bound between nonlinearity and algebraic immunity, IACR Cryptology ePrint Archive, Report 2005/441, URL http://eprint.iacr.org/2005/441.
|
|
[27]
|
J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on Information Theory, 15 (1969), 122-127.
doi: 10.1109/tit.1969.1054260.
|
|
[28]
|
W. Meier, E. Pasalic and C. Carlet, Algebraic attacks and decomposition of Boolean functions, in Advances in Cryptology-EUROCRYPT 2004, Springer, 3027 (2004), 474–491.
doi: 10.1007/978-3-540-24676-3_28.
|
|
[29]
|
W. Meier and O. Staffelbach, Fast correlation attacks on stream ciphers, J. Cryptology, 1 (1989), 159-176.
doi: 10.1007/BF02252874.
|
|
[30]
|
J. Peng, Q. S. Wu and H. B. Kan, On symmetric Boolean functions with high algebraic immunity on even number of variables, IEEE Transactions on Information Theory, 57 (2011), 7205-7220.
doi: 10.1109/TIT.2011.2132113.
|
|
[31]
|
L. J. Qu, C. Li and K. Q. Feng, A note on symmetric Boolean functions with maximum algebraic immunity in odd number of variables, IEEE Transactions on Information Theory, 53 (2007), 2908-2910.
doi: 10.1109/TIT.2007.901189.
|
|
[32]
|
S. Ronjom and T. Helleseth, A new attack on the filter generator, IEEE Transactions on Information Theory, 53 (2007), 1752-1758.
doi: 10.1109/TIT.2007.894690.
|
|
[33]
|
S. Sarkar and S. Maitra, Construction of rotation symmetric Boolean functions on odd number of variables with maximum algebraic immunity, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 4851 (2007), 271–280.
doi: 10.1007/978-3-540-77224-8_32.
|
|
[34]
|
T. Siegenthaler, Decrypting a class of stream ciphers using ciphertext only, IEEE Transactions on Computers, 34 (1985), 81-85.
doi: 10.1109/TC.1985.1676518.
|
|
[35]
|
S. H. Su and X. H. Tang, Construction of rotation symmetric Boolean functions with optimal algebraic immunity and high nonlinearity, Designs, Codes and Cryptography, 71 (2014), 183-199.
doi: 10.1007/s10623-012-9727-x.
|
|
[36]
|
S. H. Su, X. H. Tang and X. Y. Zeng, A systematic method of constructing Boolean functions with optimal algebraic immunity based on the generator matrix of the Reed-Muller code, Designs, Codes and Cryptography, 72 (2014), 653-673.
doi: 10.1007/s10623-013-9801-z.
|
|
[37]
|
D. Tang, C. Carlet and X. H. Tang, A class of 1-resilient Boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks, International Journal of Foundations of Computer Science, 25 (2014), 763–780, http://dx.doi.org/10.1142/S0129054114500324.
doi: 10.1142/S0129054114500324.
|
|
[38]
|
D. Tang, C. Carlet, X. H. Tang and Z. C. Zhou, Construction of highly nonlinear 1-resilient Boolean functions with optimal algebraic immunity and provably high fast algebraic immunity, IEEE Transactions on Information Theory, 63 (2017), 6113-6125.
|
|
[39]
|
D. Tang, R. Luo and X. N. Du, The exact fast algebraic immunity of two subclasses of the majority function, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 99 (2016), 2084-2088.
doi: 10.1587/transfun.E99.A.2084.
|
|
[40]
|
Q. C. Wang and T. Johansson, A note on fast algebraic attacks and higher order nonlinearities, in Information Security and Cryptology, Springer, 6584 (2010), 404–414.
doi: 10.1007/978-3-642-21518-6_28.
|