Advanced Search
Article Contents
Article Contents

Malleability and ownership of proxy signatures: Towards a stronger definition and its limitations

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • Proxy signature is a cryptographic primitive that allows an entity to delegate singing rights to another entity. Noticing the ad-hoc nature of security analysis prevalent in the existing literature, Boldyreva, Palacio and Warinschi proposed a formal security model for proxy signature. We revisit their proposed security definition in the context of the most natural construction of proxy signature – delegation-by-certificate. Our analysis indicates certain limitations of their definition that arise due to malleability of proxy signature as well as signature ownership in the context of standard signature. We propose a stronger definition of proxy signature to address these issues. However, we observe that the natural reductionist security argument of the delegation-by certificate proxy signature construction under this definition seems to require a rather unnatural security property for a standard signature.

    Mathematics Subject Classification: Primary: 94A60; Secondary: 94A62.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Different attack scenarios

  • [1] A. Bakker, M. van Steen and A. S. Tanenbaum, A law-abiding peer-to-peer network for free-software distribution, in IEEE International Symposium on Network Computing and Applications NCA 2001, Cambridge, MA, USA, IEEE Computer Society, (2001), 60–67. doi: 10.1109/NCA.2001.962516.
    [2] L. Bassham, W. Polk and R. Housley, Algorithms and identifiers for the internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile, RFC 3279 (Proposed Standard), (2002). Updated by RFCs 4055, 4491, 5480, 5758. doi: 10.17487/rfc3279.
    [3] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, in 11 CCS'93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, ACM, (1993), 62–73. doi: 10.1145/168588.168596.
    [4] D. J. Bernstein, Multi-User Schnorr Security, Revisited, Cryptology ePrint Archive, Report 2015/996, 2015, http://eprint.iacr.org/.
    [5] S. Blake-Wilson and A. Menezes, Unknown key-share attacks on the station-to-station (sts) protocol, In Public Key Cry.Ptography, (1999), 154–170. doi: 10.1007/3-540-49162-7_12.
    [6] A. Boldyreva, A. Palacio and B. Warinschi, Secure proxy signature schemes for delegation of signing rights, Cryptology ePrint Archive, Report 2003/096, 2003, http://eprint.iacr.org/.
    [7] A. BoldyrevaA. Palacio and B. Warinschi, Secure proxy signature schemes for delegation of signing rights, Journal of Cryptology, 25 (2012), 57-115.  doi: 10.1007/s00145-010-9082-x.
    [8] Certicom Research, SEC 1: Elliptic Curve Cryptography, Version 2.0, 2009. Available at: http://www.secg.org/.
    [9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile, RFC 5280 (Proposed Standard), 2008. Updated by RFC 6818 RFC 8398, RFC 8399. doi: 10.17487/rfc5280.
    [10] D. DerlerC. Hanser and D. Slamanig, Privacy-enhancing proxy signatures from non-interactive anonymous credentials, Data and Applications Security and Privacy, 8566 (2014), 49-65.  doi: 10.1007/978-3-662-43936-4_4.
    [11] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, A security architecture for computational grids, in CCS '98 Proceedings of the 5th ACM Conference on Computer and Communications Security, San Francisco, CA, USA, ACM, (1998), 83–92. doi: 10.1145/288090.288111.
    [12] S. GalbraithJ. Malone-Lee and N. P. Smart, Public key signatures in the multi-user setting, Information Processing Letters, 83 (2002), 263-266.  doi: 10.1016/S0020-0190(01)00338-6.
    [13] S. Goldwasser, S. Micali and R. Rivest, A "paradoxical" solution to the signature problem, Proceedings of the IEEE 25th Annual Symposium on Foundations of Computer Science, (1984), 441–448. doi: 10.1109/SFCS.1984.715946.
    [14] S. GoldwasserS. Micali and R. Rivest, A digital signature scheme secure against adaptive chosen-message attacks, SIAM J. of Computing, 17 (1988), 281-308.  doi: 10.1137/0217017.
    [15] B. Jens-MatthiasS. Röhrich and R. Steinwandt, Key substitution attacks revisited: Taking into account malicious signers, International Journal of Information Security, 5 (2006), 30-36. 
    [16] E. Kiltz, D. Masny and J. Pan, Schnorr Signatures in the Multi-User Setting, Cryptology ePrint Archive, Report 2015/1122, 2015, http://eprint.iacr.org/.
    [17] N. Koblitz and A. Menezes, Another look at security definitions, Advances in Mathematics of Communications, 7 (2013), 1-38.  doi: 10.3934/amc.2013.7.1.
    [18] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung and C. Wachter, Ron was Wrong, Whit is Right, Cryptology ePrint Archive, Report 2012/064, 2012, http://eprint.iacr.org/.
    [19] M. Mambo, K. Usuda and E. Okamoto, Proxy signatures for delegating signing operation, in CCS '96, Proceedings of the 3rd ACM Conference on Computer and Communications Security, New Delhi, India, ACM, (1996), 48–57. doi: 10.1145/238168.238185.
    [20] U. Maurer, Intrinsic limitations of digital signatures and how to cope with them, in Information Security, (2003), 180–192. doi: 10.1007/10958513_14.
    [21] A. Menezes and N. Smart, Security of signature schemes in a multi-user setting, Designs, Codes and Cryptography, 33 (2004), 261-274.  doi: 10.1023/B:DESI.0000036250.18062.3f.
    [22] NIST National Institute of Standards and Technology, Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, 2007. Available via: http://csrc.nist.gov/publications/PubsSPs.html.
    [23] NIST National Institute of Standards and Technology, Digital Signature Standard (DSS) (FIPS 186-4), 2013.
    [24] T. Pornin and J. P. Stern, Digital signatures do not guarantee exclusive ownership, Applied Cryptography and Network Security, 3531 (2005), 138-150.  doi: 10.1007/11496137_10.
    [25] M. Stevens, A. Lenstra and B. de Weger, Chosen-prefix collisions for MD5 and colliding X.509 certificates for different identities, in Advances in Cryptology—EUROCRYPT 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4515 (2007), 1–22. doi: 10.1007/978-3-540-72540-4_1.
    [26] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik and B. de Weger, Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate, in Advances in Cryptology-CRYPTO 2009, Lecture Notes in Comput. Sci., Springer, Berlin, 5677 (2009), 55–69. doi: 10.1007/978-3-642-03356-8_4.
    [27] S. Vaudenay, Digital signature schemes with domain parameters: Yet another parameter issue in ECDSA, in ACISP, Lecture Notes in Computer Science, Springer, 3108 (2004), 188–199. doi: 10.1007/978-3-540-27800-9_17.
    [28] P. Yee, Updates to the internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile, RFC 6818 (Proposed Standard), (2013), updates: RFC 5280. doi: 10.17487/rfc6818.
    [29] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.0), 2017, http://www.sagemath.org.
  • 加载中



Article Metrics

HTML views(1333) PDF downloads(708) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint