doi: 10.3934/amc.2020016

Efficient traceable ring signature scheme without pairings

School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

* Corresponding author: Ke Gu

Received  February 2018 Revised  March 2019 Published  September 2019

Fund Project: This work is supported by the National Natural Science Foundations of China (No.61402055), the Hunan Provincial Natural Science Foundation of China (No.2018JJ2445) and the Open Research Fund of Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges (No.2017WLFZZC003)

Although currently several traceable (or linkable) ring signature schemes have been proposed, most of them are constructed on pairings. In this paper, we present an efficient traceable ring signature (TRS) scheme without pairings, which is based on the modified EDL signature (first proposed by D.Chaum et al. in Crypto 92). Compared with other ring signature schemes, the proposed scheme does not employ pairing computation and has some computational advantages, whose security can be reduced to the computational Diffie-Hellman (CDH) and decisional Diffie-Hellman (DDH) assumptions in the random oracle model. Also, the proposed scheme is similar to certificateless signature scheme, where user and key generating center make interaction to generate ring key. We give a formal security model for ring signature and prove that the proposed scheme has the properties of traceability and anonymity.

Citation: Ke Gu, Xinying Dong, Linyu Wang. Efficient traceable ring signature scheme without pairings. Advances in Mathematics of Communications, doi: 10.3934/amc.2020016
References:
[1]

M. Abe, M. Ohkubo and K. Suzuki, 1-out-of-n signatures from a variety of keys, Advances in Cryptology—ASIACRYPT 2002, (2002), 415–432. doi: 10.1007/3-540-36178-2_26.  Google Scholar

[2]

M. AbeM. Ohkubo and K. Suzuki, Efficient threshold signer-ambiguous signatures from variety of keys, IEICE Trans 2004, 87 (2004), 471-479.   Google Scholar

[3]

M. H. Au, S. S. M. Chow, W. Susilo and P. P. Tsang, Short linkable ring signatures revisited, Public Key Infrastructure, (2006), 101–115. doi: 10.1007/11774716_9.  Google Scholar

[4]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction, Theoretical Computer Science, 469 (2013), 1-14.  doi: 10.1016/j.tcs.2012.10.031.  Google Scholar

[5]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Constant-size ID-based linkable and revocable-iff-linked ring signature, Progress in cryptology—INDOCRYPT 2006, 4329 (2006), 364-378.  doi: 10.1007/11941378_26.  Google Scholar

[6]

M. H. Au, J. K. Liu, T. H. Yuen and D. S. Wong, ID-based ring signature scheme secure in the standard model, Advances in Information and Computer Security, Lecture Notes in Comput. Sci., Springer, Berlin, 4266 (2006), 1–16. doi: 10.1007/11908739_1.  Google Scholar

[7]

P. S. L. M. Barreto, B. Libert, N. McCullagh and J.-J. Quisquater, Efficient and provably-secure identity-based signatures and signcryption from bilinear maps, Advances in Cryptology—ASIACRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3788 (2005), 515–532. doi: 10.1007/11593447_28.  Google Scholar

[8]

A. Bender, J. Katz and R. Morselli, Ring signatures: Stronger definitions, and constructions without random oracles, Theory of Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 3876 (2006), 60–79. doi: 10.1007/11681878_4.  Google Scholar

[9]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 213–229. doi: 10.1007/3-540-44647-8_13.  Google Scholar

[10]

D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifieably encrypted signatures from bilinear maps, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 416–432. doi: 10.1007/3-540-39200-9_26.  Google Scholar

[11]

D. Boneh and M. Hanburg, Generalized identity based and broadcast encryption schemes, Advances in Cryptology—ASIACRYPT 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5350 (2008), 455–470. doi: 10.1007/978-3-540-89255-7_28.  Google Scholar

[12]

S. Brands, Untraceable off-line cash in wallet with observers, CRYPTO'93, 773 (1993), 302-318.   Google Scholar

[13]

E. Bresson, J. Stern and M. Szydlo, Threshold ring signatures and applications to ad-hoc groups, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 465–480. doi: 10.1007/3-540-45708-9_30.  Google Scholar

[14]

J. C. Cha and J. H. Cheon, An identity-based signature from gap Diffie-Hellman groups, Public Key Cryptography—PKC 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2567 (2002), 18–30. doi: 10.1007/3-540-36288-6_2.  Google Scholar

[15]

D. Chaum, Blind signatures for untraceable payments, Advances in Cryptology, 397 (1983), 199-203.  doi: 10.1007/978-1-4757-0602-4_18.  Google Scholar

[16]

D. Chaum, A. Fiat and M. Naor, Untraceable electronic cash, Advances in Cryptology—CRYPTO'88, (1988), 319–327. doi: 10.1007/0-387-34799-2_25.  Google Scholar

[17]

D. Chaum and T. P. Pedersen, Wallet databases with observers, In Ernest Brickell, Proceedings of Crypto 92, 0740 (1992), 89-105.   Google Scholar

[18]

D. Chaum and E. Van Heyst, Group signatures, Advances in Cryptology—EUROCRYPT'91, (1991), 257–265. doi: 10.1007/3-540-46416-6_22.  Google Scholar

[19]

B. Chevallier-Mames, An efficient CDH-based signature scheme with a tight security reduction, Advances in Cryptology—CRYPTO 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3621 (2005), 511–526. doi: 10.1007/11535218_31.  Google Scholar

[20]

S. S. M. Chow, J. K. Liu and D. S. Wong, Robust receipt-free election system with ballot secrecy and verifieability, NDSS 2008, (1993), 1–14. Google Scholar

[21]

S. S. M. ChowS. M. Yiu and L. C. K. Hui, Efficient identity based ring signature, ACNS 2005, 3531 (2005), 499-512.   Google Scholar

[22]

I. Damgøard, K. Dupont and M. Pedersen, Unclonable group identification, Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 4004 (2006), 555–572. doi: 10.1007/11761679_33.  Google Scholar

[23]

Y. Dodis, A. Kiayias, A. Nicolosi and V. Shoup, Anonymous identification in Ad hoc groups, Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3027 (2004), 609–626. doi: 10.1007/978-3-540-24676-3_36.  Google Scholar

[24]

K. EmuraA. Miyaji and K. Omote, An r-hiding revocable group signature scheme: Group signatures with the property of hiding the number of revoked users, Journal of Applied Mathematics, 2014 (2011), 1-14.   Google Scholar

[25]

E. Fujisaki, Sub-linear size traceable ring signatures without random oracles, Topics in Cryptology—CT-RSA 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6558 (2011), 393–415. doi: 10.1007/978-3-642-19074-2_25.  Google Scholar

[26]

E. Fujisaki and K. Suzuki, Traceable ring signature, Public Key Cryptography 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4450 (2007), 181–200. doi: 10.1007/978-3-540-71677-8_13.  Google Scholar

[27]

E.-J. Goh and S. Jarecki, A signature scheme as secure as the Diffie-Hellman problem, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 401–415. doi: 10.1007/3-540-39200-9_25.  Google Scholar

[28]

K. GuW. Jia and C. Jiang., Efficient and secure identity-based proxy signature in the standard modell, The Computer Journal, 58 (2015), 792-807.   Google Scholar

[29]

K. GuW. J. JiaG. J. Wang and S. Wen, Efficient and secure attribute-based signature for monotone predicates, Acta Informatica, 54 (2017), 521-541.  doi: 10.1007/s00236-016-0270-5.  Google Scholar

[30]

K. GuW. J. Jia and J. M. Zhang, Identity-based multi-proxy signature scheme in the standard model, Fundamenta Informaticae, 150 (2017), 179-210.  doi: 10.3233/FI-2017-1464.  Google Scholar

[31]

F. Hess, Efficient identity based signature schemes based on pairings, Selected Areas in Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 2595 (2003), 310–324. doi: 10.1007/3-540-36492-7_20.  Google Scholar

[32]

L. Ibraimi, S. I. Nikova, P. H. Hartel and W. Jonker, An identity-based group signature with membership revocation in the standard model, Faculty of Electrical Engineering, Mathematics & Computer Science, Available from: http:/doc.utwente.nl/72270/1/Paper.pdf. Google Scholar

[33]

M. Jakobsson and C. P. Schnorr, Efficient oblivious proofs of correct exponentiation, Proceedings of the IFIP Conference on Communications and Multimedia Security 99, 152 (1999), 71-86.  doi: 10.1007/978-0-387-35568-9_5.  Google Scholar

[34]

I. R. JeongJ. O. Kwon and D. H. Lee, Analysis of revocable-iff-linked ring signature scheme, IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 92 (2009), 322-325.  doi: 10.1587/transfun.E92.A.322.  Google Scholar

[35]

Y. Komano, K. Ohta, A. Shimbo and S. Kawamura, Toward the fair anonymous signatures: Deniable ring signatures, Topics in Cryptology—CT-RSA 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 3860 (2006), 174–191. doi: 10.1007/11605805_12.  Google Scholar

[36]

F. Laguillaumie and D. Vergnaud, Multi-designated verifiers signatures, Information and Communications Security, (2004), 495–507. doi: 10.1007/978-3-540-30191-2_38.  Google Scholar

[37]

J. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Linkable ring signature with unconditional anonymity, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 157-165.  doi: 10.1109/TKDE.2013.17.  Google Scholar

[38]

D. Y. W. LiuJ. K. LiuY. MuW. Susilo and D. S. Wong, Revocable ring signature, J. Comput. Sci. Tech., 22 (2007), 785-794.  doi: 10.1007/s11390-007-9096-5.  Google Scholar

[39]

J. K. Liu, V. K. Wei and D. S. Wong, Linkable spontaneous anonymous group signature for ad hoc groups, Information Security and Privacy, (2004), 325–335. doi: 10.1007/978-3-540-27800-9_28.  Google Scholar

[40]

J. K. Liu and D. S. Wong, Linkable ring signatures: Security models and new schemes, Computational Science and Its Applications—ICCSA 2005, (2005), 614–623. doi: 10.1007/11424826_65.  Google Scholar

[41]

J. K. Liu and D. S. Wong, Enhanced security models and a generic construction approach for linkable ring signature, Int. J. Found.Computt. Sci., 17 (2006), 1403-1422.  doi: 10.1142/S0129054106004480.  Google Scholar

[42]

M. Naor, Deniable ring authentication, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 481–498. doi: 10.1007/3-540-45708-9_31.  Google Scholar

[43]

T. Okamoto and K. Ohta, Universal electronic cash, Advances in Cryptology—CRYPTO'91, 403 (1991), 324-337.  doi: 10.1007/3-540-46766-1_27.  Google Scholar

[44]

K. G. Paterson and J. C. N. Schuldt, Efficient identity-based signatures secure in the standard model, A Information Security and Privacy, (2006), 207–222. doi: 10.1007/11780656_18.  Google Scholar

[45]

R. L. Rivest, A. Shamir and Y. Tauman, How to leak a secret, Advances in Cryptology—ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., Springer, Berlin, 2248 (2001), 552–565. doi: 10.1007/3-540-45682-1_32.  Google Scholar

[46]

A. Shamir and Y. Tauman, Improved online/offline signature scheme, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 355–367. doi: 10.1007/3-540-44647-8_21.  Google Scholar

[47]

W. Susilo and Y. Mu, Non-interactive deniable ring authentication, Information Security and Cryptology—ICISC, Lecture Notes in Comput. Sci., Springer, Berlin, 2971 (2004), 386–401. doi: 10.1007/978-3-540-24691-6_29.  Google Scholar

[48]

P. P. Tsang and V. K. Wei, Short linkable ring signatures for e-voting, e-cash and attestation, Information Security Practice and Experience, (2005), 48–60. doi: 10.1007/978-3-540-31979-5_5.  Google Scholar

[49]

P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu and D. S. Wong, Separable linkable threshold ring signatures, Progress in Cryptology—INDOCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3348 (2004), 384–398. doi: 10.1007/978-3-540-30556-9_30.  Google Scholar

[50]

B. Waters, Efficient identity-based encryption without random oracles, Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3494 (2005), 114–127. doi: 10.1007/11426639_7.  Google Scholar

[51]

D. S. Wong, K. Fung, J. K. Liu and V. K. Wei, On the RS-code construction of ring signature schemes and a threshold setting of RST, Information and Communications Security, (2003), 34–46. doi: 10.1007/978-3-540-39927-8_4.  Google Scholar

[52]

T. H. YuenJ. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Efficient linkable and/or threshold ring signature without random oracles, The Computer Journal, 56 (2013), 407-421.  doi: 10.1093/comjnl/bxs115.  Google Scholar

[53]

S. K. ZengS. Q. Jiang and Z. G. Qin, An efficient conditionally anonymous ring signature in the random oracle model, Theoretical Computer Science, 461 (2012), 106-114.  doi: 10.1016/j.tcs.2012.01.027.  Google Scholar

[54]

F. G. Zhang and K. Kim, ID-based blind signature and ring signature from pairings, Advances in Cryptology—ASIACRYPT 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 533–547. doi: 10.1007/3-540-36178-2_33.  Google Scholar

[55]

D. Zheng, X. X. Li, K. F. Chen and J. H. Li, Linkable ring signatures from linear feedback shift register, Emerging Directions in Embedded and Ubiquitous Computing, (2007), 716–727. doi: 10.1007/978-3-540-77090-9_66.  Google Scholar

show all references

References:
[1]

M. Abe, M. Ohkubo and K. Suzuki, 1-out-of-n signatures from a variety of keys, Advances in Cryptology—ASIACRYPT 2002, (2002), 415–432. doi: 10.1007/3-540-36178-2_26.  Google Scholar

[2]

M. AbeM. Ohkubo and K. Suzuki, Efficient threshold signer-ambiguous signatures from variety of keys, IEICE Trans 2004, 87 (2004), 471-479.   Google Scholar

[3]

M. H. Au, S. S. M. Chow, W. Susilo and P. P. Tsang, Short linkable ring signatures revisited, Public Key Infrastructure, (2006), 101–115. doi: 10.1007/11774716_9.  Google Scholar

[4]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction, Theoretical Computer Science, 469 (2013), 1-14.  doi: 10.1016/j.tcs.2012.10.031.  Google Scholar

[5]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Constant-size ID-based linkable and revocable-iff-linked ring signature, Progress in cryptology—INDOCRYPT 2006, 4329 (2006), 364-378.  doi: 10.1007/11941378_26.  Google Scholar

[6]

M. H. Au, J. K. Liu, T. H. Yuen and D. S. Wong, ID-based ring signature scheme secure in the standard model, Advances in Information and Computer Security, Lecture Notes in Comput. Sci., Springer, Berlin, 4266 (2006), 1–16. doi: 10.1007/11908739_1.  Google Scholar

[7]

P. S. L. M. Barreto, B. Libert, N. McCullagh and J.-J. Quisquater, Efficient and provably-secure identity-based signatures and signcryption from bilinear maps, Advances in Cryptology—ASIACRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3788 (2005), 515–532. doi: 10.1007/11593447_28.  Google Scholar

[8]

A. Bender, J. Katz and R. Morselli, Ring signatures: Stronger definitions, and constructions without random oracles, Theory of Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 3876 (2006), 60–79. doi: 10.1007/11681878_4.  Google Scholar

[9]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 213–229. doi: 10.1007/3-540-44647-8_13.  Google Scholar

[10]

D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifieably encrypted signatures from bilinear maps, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 416–432. doi: 10.1007/3-540-39200-9_26.  Google Scholar

[11]

D. Boneh and M. Hanburg, Generalized identity based and broadcast encryption schemes, Advances in Cryptology—ASIACRYPT 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5350 (2008), 455–470. doi: 10.1007/978-3-540-89255-7_28.  Google Scholar

[12]

S. Brands, Untraceable off-line cash in wallet with observers, CRYPTO'93, 773 (1993), 302-318.   Google Scholar

[13]

E. Bresson, J. Stern and M. Szydlo, Threshold ring signatures and applications to ad-hoc groups, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 465–480. doi: 10.1007/3-540-45708-9_30.  Google Scholar

[14]

J. C. Cha and J. H. Cheon, An identity-based signature from gap Diffie-Hellman groups, Public Key Cryptography—PKC 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2567 (2002), 18–30. doi: 10.1007/3-540-36288-6_2.  Google Scholar

[15]

D. Chaum, Blind signatures for untraceable payments, Advances in Cryptology, 397 (1983), 199-203.  doi: 10.1007/978-1-4757-0602-4_18.  Google Scholar

[16]

D. Chaum, A. Fiat and M. Naor, Untraceable electronic cash, Advances in Cryptology—CRYPTO'88, (1988), 319–327. doi: 10.1007/0-387-34799-2_25.  Google Scholar

[17]

D. Chaum and T. P. Pedersen, Wallet databases with observers, In Ernest Brickell, Proceedings of Crypto 92, 0740 (1992), 89-105.   Google Scholar

[18]

D. Chaum and E. Van Heyst, Group signatures, Advances in Cryptology—EUROCRYPT'91, (1991), 257–265. doi: 10.1007/3-540-46416-6_22.  Google Scholar

[19]

B. Chevallier-Mames, An efficient CDH-based signature scheme with a tight security reduction, Advances in Cryptology—CRYPTO 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3621 (2005), 511–526. doi: 10.1007/11535218_31.  Google Scholar

[20]

S. S. M. Chow, J. K. Liu and D. S. Wong, Robust receipt-free election system with ballot secrecy and verifieability, NDSS 2008, (1993), 1–14. Google Scholar

[21]

S. S. M. ChowS. M. Yiu and L. C. K. Hui, Efficient identity based ring signature, ACNS 2005, 3531 (2005), 499-512.   Google Scholar

[22]

I. Damgøard, K. Dupont and M. Pedersen, Unclonable group identification, Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 4004 (2006), 555–572. doi: 10.1007/11761679_33.  Google Scholar

[23]

Y. Dodis, A. Kiayias, A. Nicolosi and V. Shoup, Anonymous identification in Ad hoc groups, Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3027 (2004), 609–626. doi: 10.1007/978-3-540-24676-3_36.  Google Scholar

[24]

K. EmuraA. Miyaji and K. Omote, An r-hiding revocable group signature scheme: Group signatures with the property of hiding the number of revoked users, Journal of Applied Mathematics, 2014 (2011), 1-14.   Google Scholar

[25]

E. Fujisaki, Sub-linear size traceable ring signatures without random oracles, Topics in Cryptology—CT-RSA 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6558 (2011), 393–415. doi: 10.1007/978-3-642-19074-2_25.  Google Scholar

[26]

E. Fujisaki and K. Suzuki, Traceable ring signature, Public Key Cryptography 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4450 (2007), 181–200. doi: 10.1007/978-3-540-71677-8_13.  Google Scholar

[27]

E.-J. Goh and S. Jarecki, A signature scheme as secure as the Diffie-Hellman problem, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 401–415. doi: 10.1007/3-540-39200-9_25.  Google Scholar

[28]

K. GuW. Jia and C. Jiang., Efficient and secure identity-based proxy signature in the standard modell, The Computer Journal, 58 (2015), 792-807.   Google Scholar

[29]

K. GuW. J. JiaG. J. Wang and S. Wen, Efficient and secure attribute-based signature for monotone predicates, Acta Informatica, 54 (2017), 521-541.  doi: 10.1007/s00236-016-0270-5.  Google Scholar

[30]

K. GuW. J. Jia and J. M. Zhang, Identity-based multi-proxy signature scheme in the standard model, Fundamenta Informaticae, 150 (2017), 179-210.  doi: 10.3233/FI-2017-1464.  Google Scholar

[31]

F. Hess, Efficient identity based signature schemes based on pairings, Selected Areas in Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 2595 (2003), 310–324. doi: 10.1007/3-540-36492-7_20.  Google Scholar

[32]

L. Ibraimi, S. I. Nikova, P. H. Hartel and W. Jonker, An identity-based group signature with membership revocation in the standard model, Faculty of Electrical Engineering, Mathematics & Computer Science, Available from: http:/doc.utwente.nl/72270/1/Paper.pdf. Google Scholar

[33]

M. Jakobsson and C. P. Schnorr, Efficient oblivious proofs of correct exponentiation, Proceedings of the IFIP Conference on Communications and Multimedia Security 99, 152 (1999), 71-86.  doi: 10.1007/978-0-387-35568-9_5.  Google Scholar

[34]

I. R. JeongJ. O. Kwon and D. H. Lee, Analysis of revocable-iff-linked ring signature scheme, IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 92 (2009), 322-325.  doi: 10.1587/transfun.E92.A.322.  Google Scholar

[35]

Y. Komano, K. Ohta, A. Shimbo and S. Kawamura, Toward the fair anonymous signatures: Deniable ring signatures, Topics in Cryptology—CT-RSA 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 3860 (2006), 174–191. doi: 10.1007/11605805_12.  Google Scholar

[36]

F. Laguillaumie and D. Vergnaud, Multi-designated verifiers signatures, Information and Communications Security, (2004), 495–507. doi: 10.1007/978-3-540-30191-2_38.  Google Scholar

[37]

J. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Linkable ring signature with unconditional anonymity, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 157-165.  doi: 10.1109/TKDE.2013.17.  Google Scholar

[38]

D. Y. W. LiuJ. K. LiuY. MuW. Susilo and D. S. Wong, Revocable ring signature, J. Comput. Sci. Tech., 22 (2007), 785-794.  doi: 10.1007/s11390-007-9096-5.  Google Scholar

[39]

J. K. Liu, V. K. Wei and D. S. Wong, Linkable spontaneous anonymous group signature for ad hoc groups, Information Security and Privacy, (2004), 325–335. doi: 10.1007/978-3-540-27800-9_28.  Google Scholar

[40]

J. K. Liu and D. S. Wong, Linkable ring signatures: Security models and new schemes, Computational Science and Its Applications—ICCSA 2005, (2005), 614–623. doi: 10.1007/11424826_65.  Google Scholar

[41]

J. K. Liu and D. S. Wong, Enhanced security models and a generic construction approach for linkable ring signature, Int. J. Found.Computt. Sci., 17 (2006), 1403-1422.  doi: 10.1142/S0129054106004480.  Google Scholar

[42]

M. Naor, Deniable ring authentication, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 481–498. doi: 10.1007/3-540-45708-9_31.  Google Scholar

[43]

T. Okamoto and K. Ohta, Universal electronic cash, Advances in Cryptology—CRYPTO'91, 403 (1991), 324-337.  doi: 10.1007/3-540-46766-1_27.  Google Scholar

[44]

K. G. Paterson and J. C. N. Schuldt, Efficient identity-based signatures secure in the standard model, A Information Security and Privacy, (2006), 207–222. doi: 10.1007/11780656_18.  Google Scholar

[45]

R. L. Rivest, A. Shamir and Y. Tauman, How to leak a secret, Advances in Cryptology—ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., Springer, Berlin, 2248 (2001), 552–565. doi: 10.1007/3-540-45682-1_32.  Google Scholar

[46]

A. Shamir and Y. Tauman, Improved online/offline signature scheme, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 355–367. doi: 10.1007/3-540-44647-8_21.  Google Scholar

[47]

W. Susilo and Y. Mu, Non-interactive deniable ring authentication, Information Security and Cryptology—ICISC, Lecture Notes in Comput. Sci., Springer, Berlin, 2971 (2004), 386–401. doi: 10.1007/978-3-540-24691-6_29.  Google Scholar

[48]

P. P. Tsang and V. K. Wei, Short linkable ring signatures for e-voting, e-cash and attestation, Information Security Practice and Experience, (2005), 48–60. doi: 10.1007/978-3-540-31979-5_5.  Google Scholar

[49]

P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu and D. S. Wong, Separable linkable threshold ring signatures, Progress in Cryptology—INDOCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3348 (2004), 384–398. doi: 10.1007/978-3-540-30556-9_30.  Google Scholar

[50]

B. Waters, Efficient identity-based encryption without random oracles, Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3494 (2005), 114–127. doi: 10.1007/11426639_7.  Google Scholar

[51]

D. S. Wong, K. Fung, J. K. Liu and V. K. Wei, On the RS-code construction of ring signature schemes and a threshold setting of RST, Information and Communications Security, (2003), 34–46. doi: 10.1007/978-3-540-39927-8_4.  Google Scholar

[52]

T. H. YuenJ. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Efficient linkable and/or threshold ring signature without random oracles, The Computer Journal, 56 (2013), 407-421.  doi: 10.1093/comjnl/bxs115.  Google Scholar

[53]

S. K. ZengS. Q. Jiang and Z. G. Qin, An efficient conditionally anonymous ring signature in the random oracle model, Theoretical Computer Science, 461 (2012), 106-114.  doi: 10.1016/j.tcs.2012.01.027.  Google Scholar

[54]

F. G. Zhang and K. Kim, ID-based blind signature and ring signature from pairings, Advances in Cryptology—ASIACRYPT 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 533–547. doi: 10.1007/3-540-36178-2_33.  Google Scholar

[55]

D. Zheng, X. X. Li, K. F. Chen and J. H. Li, Linkable ring signatures from linear feedback shift register, Emerging Directions in Embedded and Ubiquitous Computing, (2007), 716–727. doi: 10.1007/978-3-540-77090-9_66.  Google Scholar

Table 1.  Performance comparisons of the Six Schemes
Signature Size Signing Cost Verification Cost
Scheme [40] $ O(n) $ $ (4\cdot n+3)\cdot e_1+2\cdot n\cdot m_1 $ $ 4\cdot n\cdot e_1+n\cdot m_1 $
Scheme [55] $ O(n) $ $ (28\cdot n+9)\cdot m_3+(22\cdot n+14)\cdot a $ $ 28\cdot n\cdot m_3+19\cdot n\cdot a $
Scheme [25] $ O(\sqrt{n}) $ $ (n+9)\cdot e_1+(n+2)\cdot m_1 $ $ (2\cdot n+3)\cdot e_1+2\cdot n\cdot m_1+9\cdot p $
Scheme [26] $ O(n) $ $ (5\cdot n-1)e_1+(3\cdot n-2)\cdot m_1 $ $ 5\cdot n\cdot e_1+3\cdot n\cdot m_1 $
Scheme [4] $ O(1) $ $ 7\cdot e_1+7\cdot m_1 $ $ 9\cdot e_1+5\cdot m_1+7\cdot e_2+8\cdot m_2+12\cdot p $
Our Scheme $ O(1) $ $ 5\cdot e_1+(n+1)\cdot m_1 $ $ 4\cdot e_1+(n+3)\cdot m_1 $
Signature Size Signing Cost Verification Cost
Scheme [40] $ O(n) $ $ (4\cdot n+3)\cdot e_1+2\cdot n\cdot m_1 $ $ 4\cdot n\cdot e_1+n\cdot m_1 $
Scheme [55] $ O(n) $ $ (28\cdot n+9)\cdot m_3+(22\cdot n+14)\cdot a $ $ 28\cdot n\cdot m_3+19\cdot n\cdot a $
Scheme [25] $ O(\sqrt{n}) $ $ (n+9)\cdot e_1+(n+2)\cdot m_1 $ $ (2\cdot n+3)\cdot e_1+2\cdot n\cdot m_1+9\cdot p $
Scheme [26] $ O(n) $ $ (5\cdot n-1)e_1+(3\cdot n-2)\cdot m_1 $ $ 5\cdot n\cdot e_1+3\cdot n\cdot m_1 $
Scheme [4] $ O(1) $ $ 7\cdot e_1+7\cdot m_1 $ $ 9\cdot e_1+5\cdot m_1+7\cdot e_2+8\cdot m_2+12\cdot p $
Our Scheme $ O(1) $ $ 5\cdot e_1+(n+1)\cdot m_1 $ $ 4\cdot e_1+(n+3)\cdot m_1 $
Table 2.  Other comparisons of the Six Schemes
Cryptography Traceability Model
Scheme [40] Public Key No random oracle
Scheme [55] Public Key No random oracle
Scheme [25] Public Key Yes without random oracle
Scheme [26] Public Key Yes random oracle
Scheme [4] Identity-Based Yes random oracle
Our Scheme Public Key Yes random oracle
Cryptography Traceability Model
Scheme [40] Public Key No random oracle
Scheme [55] Public Key No random oracle
Scheme [25] Public Key Yes without random oracle
Scheme [26] Public Key Yes random oracle
Scheme [4] Identity-Based Yes random oracle
Our Scheme Public Key Yes random oracle
[1]

Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012

[2]

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020027

[3]

Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353

[4]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[5]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[6]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[7]

Koray Karabina, Edward Knapp, Alfred Menezes. Generalizations of Verheul's theorem to asymmetric pairings. Advances in Mathematics of Communications, 2013, 7 (1) : 103-111. doi: 10.3934/amc.2013.7.103

[8]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[9]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[10]

José Moreira, Marcel Fernández, Miguel Soriano. On the relationship between the traceability properties of Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (4) : 467-478. doi: 10.3934/amc.2012.6.467

[11]

Stefanella Boatto. Curvature perturbations and stability of a ring of vortices. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 349-375. doi: 10.3934/dcdsb.2008.10.349

[12]

Lisa C. Jeffrey and Frances C. Kirwan. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic Research Announcements, 1995, 1: 57-71.

[13]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[14]

Riccardo Aragona, Alessio Meneghetti. Type-preserving matrices and security of block ciphers. Advances in Mathematics of Communications, 2019, 13 (2) : 235-251. doi: 10.3934/amc.2019016

[15]

Jie Xu, Lanjun Dang. An efficient RFID anonymous batch authentication protocol based on group signature. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1489-1500. doi: 10.3934/dcdss.2019102

[16]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[17]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[18]

Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020028

[19]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[20]

Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 63-76. doi: 10.3934/mfc.2018004

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (50)
  • HTML views (119)
  • Cited by (0)

Other articles
by authors

[Back to Top]