May  2020, 14(2): 207-232. doi: 10.3934/amc.2020016

Efficient traceable ring signature scheme without pairings

School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

* Corresponding author: Ke Gu

Received  February 2018 Revised  March 2019 Published  September 2019

Fund Project: This work is supported by the National Natural Science Foundations of China (No.61402055), the Hunan Provincial Natural Science Foundation of China (No.2018JJ2445) and the Open Research Fund of Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges (No.2017WLFZZC003)

Although currently several traceable (or linkable) ring signature schemes have been proposed, most of them are constructed on pairings. In this paper, we present an efficient traceable ring signature (TRS) scheme without pairings, which is based on the modified EDL signature (first proposed by D.Chaum et al. in Crypto 92). Compared with other ring signature schemes, the proposed scheme does not employ pairing computation and has some computational advantages, whose security can be reduced to the computational Diffie-Hellman (CDH) and decisional Diffie-Hellman (DDH) assumptions in the random oracle model. Also, the proposed scheme is similar to certificateless signature scheme, where user and key generating center make interaction to generate ring key. We give a formal security model for ring signature and prove that the proposed scheme has the properties of traceability and anonymity.

Citation: Ke Gu, Xinying Dong, Linyu Wang. Efficient traceable ring signature scheme without pairings. Advances in Mathematics of Communications, 2020, 14 (2) : 207-232. doi: 10.3934/amc.2020016
References:
[1]

M. Abe, M. Ohkubo and K. Suzuki, 1-out-of-n signatures from a variety of keys, Advances in Cryptology—ASIACRYPT 2002, (2002), 415–432. doi: 10.1007/3-540-36178-2_26.  Google Scholar

[2]

M. AbeM. Ohkubo and K. Suzuki, Efficient threshold signer-ambiguous signatures from variety of keys, IEICE Trans 2004, 87 (2004), 471-479.   Google Scholar

[3]

M. H. Au, S. S. M. Chow, W. Susilo and P. P. Tsang, Short linkable ring signatures revisited, Public Key Infrastructure, (2006), 101–115. doi: 10.1007/11774716_9.  Google Scholar

[4]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction, Theoretical Computer Science, 469 (2013), 1-14.  doi: 10.1016/j.tcs.2012.10.031.  Google Scholar

[5]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Constant-size ID-based linkable and revocable-iff-linked ring signature, Progress in cryptology—INDOCRYPT 2006, 4329 (2006), 364-378.  doi: 10.1007/11941378_26.  Google Scholar

[6]

M. H. Au, J. K. Liu, T. H. Yuen and D. S. Wong, ID-based ring signature scheme secure in the standard model, Advances in Information and Computer Security, Lecture Notes in Comput. Sci., Springer, Berlin, 4266 (2006), 1–16. doi: 10.1007/11908739_1.  Google Scholar

[7]

P. S. L. M. Barreto, B. Libert, N. McCullagh and J.-J. Quisquater, Efficient and provably-secure identity-based signatures and signcryption from bilinear maps, Advances in Cryptology—ASIACRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3788 (2005), 515–532. doi: 10.1007/11593447_28.  Google Scholar

[8]

A. Bender, J. Katz and R. Morselli, Ring signatures: Stronger definitions, and constructions without random oracles, Theory of Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 3876 (2006), 60–79. doi: 10.1007/11681878_4.  Google Scholar

[9]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 213–229. doi: 10.1007/3-540-44647-8_13.  Google Scholar

[10]

D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifieably encrypted signatures from bilinear maps, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 416–432. doi: 10.1007/3-540-39200-9_26.  Google Scholar

[11]

D. Boneh and M. Hanburg, Generalized identity based and broadcast encryption schemes, Advances in Cryptology—ASIACRYPT 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5350 (2008), 455–470. doi: 10.1007/978-3-540-89255-7_28.  Google Scholar

[12]

S. Brands, Untraceable off-line cash in wallet with observers, CRYPTO'93, 773 (1993), 302-318.   Google Scholar

[13]

E. Bresson, J. Stern and M. Szydlo, Threshold ring signatures and applications to ad-hoc groups, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 465–480. doi: 10.1007/3-540-45708-9_30.  Google Scholar

[14]

J. C. Cha and J. H. Cheon, An identity-based signature from gap Diffie-Hellman groups, Public Key Cryptography—PKC 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2567 (2002), 18–30. doi: 10.1007/3-540-36288-6_2.  Google Scholar

[15]

D. Chaum, Blind signatures for untraceable payments, Advances in Cryptology, 397 (1983), 199-203.  doi: 10.1007/978-1-4757-0602-4_18.  Google Scholar

[16]

D. Chaum, A. Fiat and M. Naor, Untraceable electronic cash, Advances in Cryptology—CRYPTO'88, (1988), 319–327. doi: 10.1007/0-387-34799-2_25.  Google Scholar

[17]

D. Chaum and T. P. Pedersen, Wallet databases with observers, In Ernest Brickell, Proceedings of Crypto 92, 0740 (1992), 89-105.   Google Scholar

[18]

D. Chaum and E. Van Heyst, Group signatures, Advances in Cryptology—EUROCRYPT'91, (1991), 257–265. doi: 10.1007/3-540-46416-6_22.  Google Scholar

[19]

B. Chevallier-Mames, An efficient CDH-based signature scheme with a tight security reduction, Advances in Cryptology—CRYPTO 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3621 (2005), 511–526. doi: 10.1007/11535218_31.  Google Scholar

[20]

S. S. M. Chow, J. K. Liu and D. S. Wong, Robust receipt-free election system with ballot secrecy and verifieability, NDSS 2008, (1993), 1–14. Google Scholar

[21]

S. S. M. ChowS. M. Yiu and L. C. K. Hui, Efficient identity based ring signature, ACNS 2005, 3531 (2005), 499-512.   Google Scholar

[22]

I. Damgøard, K. Dupont and M. Pedersen, Unclonable group identification, Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 4004 (2006), 555–572. doi: 10.1007/11761679_33.  Google Scholar

[23]

Y. Dodis, A. Kiayias, A. Nicolosi and V. Shoup, Anonymous identification in Ad hoc groups, Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3027 (2004), 609–626. doi: 10.1007/978-3-540-24676-3_36.  Google Scholar

[24]

K. EmuraA. Miyaji and K. Omote, An r-hiding revocable group signature scheme: Group signatures with the property of hiding the number of revoked users, Journal of Applied Mathematics, 2014 (2011), 1-14.   Google Scholar

[25]

E. Fujisaki, Sub-linear size traceable ring signatures without random oracles, Topics in Cryptology—CT-RSA 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6558 (2011), 393–415. doi: 10.1007/978-3-642-19074-2_25.  Google Scholar

[26]

E. Fujisaki and K. Suzuki, Traceable ring signature, Public Key Cryptography 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4450 (2007), 181–200. doi: 10.1007/978-3-540-71677-8_13.  Google Scholar

[27]

E.-J. Goh and S. Jarecki, A signature scheme as secure as the Diffie-Hellman problem, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 401–415. doi: 10.1007/3-540-39200-9_25.  Google Scholar

[28]

K. GuW. Jia and C. Jiang., Efficient and secure identity-based proxy signature in the standard modell, The Computer Journal, 58 (2015), 792-807.   Google Scholar

[29]

K. GuW. J. JiaG. J. Wang and S. Wen, Efficient and secure attribute-based signature for monotone predicates, Acta Informatica, 54 (2017), 521-541.  doi: 10.1007/s00236-016-0270-5.  Google Scholar

[30]

K. GuW. J. Jia and J. M. Zhang, Identity-based multi-proxy signature scheme in the standard model, Fundamenta Informaticae, 150 (2017), 179-210.  doi: 10.3233/FI-2017-1464.  Google Scholar

[31]

F. Hess, Efficient identity based signature schemes based on pairings, Selected Areas in Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 2595 (2003), 310–324. doi: 10.1007/3-540-36492-7_20.  Google Scholar

[32]

L. Ibraimi, S. I. Nikova, P. H. Hartel and W. Jonker, An identity-based group signature with membership revocation in the standard model, Faculty of Electrical Engineering, Mathematics & Computer Science, Available from: http:/doc.utwente.nl/72270/1/Paper.pdf. Google Scholar

[33]

M. Jakobsson and C. P. Schnorr, Efficient oblivious proofs of correct exponentiation, Proceedings of the IFIP Conference on Communications and Multimedia Security 99, 152 (1999), 71-86.  doi: 10.1007/978-0-387-35568-9_5.  Google Scholar

[34]

I. R. JeongJ. O. Kwon and D. H. Lee, Analysis of revocable-iff-linked ring signature scheme, IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 92 (2009), 322-325.  doi: 10.1587/transfun.E92.A.322.  Google Scholar

[35]

Y. Komano, K. Ohta, A. Shimbo and S. Kawamura, Toward the fair anonymous signatures: Deniable ring signatures, Topics in Cryptology—CT-RSA 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 3860 (2006), 174–191. doi: 10.1007/11605805_12.  Google Scholar

[36]

F. Laguillaumie and D. Vergnaud, Multi-designated verifiers signatures, Information and Communications Security, (2004), 495–507. doi: 10.1007/978-3-540-30191-2_38.  Google Scholar

[37]

J. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Linkable ring signature with unconditional anonymity, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 157-165.  doi: 10.1109/TKDE.2013.17.  Google Scholar

[38]

D. Y. W. LiuJ. K. LiuY. MuW. Susilo and D. S. Wong, Revocable ring signature, J. Comput. Sci. Tech., 22 (2007), 785-794.  doi: 10.1007/s11390-007-9096-5.  Google Scholar

[39]

J. K. Liu, V. K. Wei and D. S. Wong, Linkable spontaneous anonymous group signature for ad hoc groups, Information Security and Privacy, (2004), 325–335. doi: 10.1007/978-3-540-27800-9_28.  Google Scholar

[40]

J. K. Liu and D. S. Wong, Linkable ring signatures: Security models and new schemes, Computational Science and Its Applications—ICCSA 2005, (2005), 614–623. doi: 10.1007/11424826_65.  Google Scholar

[41]

J. K. Liu and D. S. Wong, Enhanced security models and a generic construction approach for linkable ring signature, Int. J. Found.Computt. Sci., 17 (2006), 1403-1422.  doi: 10.1142/S0129054106004480.  Google Scholar

[42]

M. Naor, Deniable ring authentication, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 481–498. doi: 10.1007/3-540-45708-9_31.  Google Scholar

[43]

T. Okamoto and K. Ohta, Universal electronic cash, Advances in Cryptology—CRYPTO'91, 403 (1991), 324-337.  doi: 10.1007/3-540-46766-1_27.  Google Scholar

[44]

K. G. Paterson and J. C. N. Schuldt, Efficient identity-based signatures secure in the standard model, A Information Security and Privacy, (2006), 207–222. doi: 10.1007/11780656_18.  Google Scholar

[45]

R. L. Rivest, A. Shamir and Y. Tauman, How to leak a secret, Advances in Cryptology—ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., Springer, Berlin, 2248 (2001), 552–565. doi: 10.1007/3-540-45682-1_32.  Google Scholar

[46]

A. Shamir and Y. Tauman, Improved online/offline signature scheme, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 355–367. doi: 10.1007/3-540-44647-8_21.  Google Scholar

[47]

W. Susilo and Y. Mu, Non-interactive deniable ring authentication, Information Security and Cryptology—ICISC, Lecture Notes in Comput. Sci., Springer, Berlin, 2971 (2004), 386–401. doi: 10.1007/978-3-540-24691-6_29.  Google Scholar

[48]

P. P. Tsang and V. K. Wei, Short linkable ring signatures for e-voting, e-cash and attestation, Information Security Practice and Experience, (2005), 48–60. doi: 10.1007/978-3-540-31979-5_5.  Google Scholar

[49]

P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu and D. S. Wong, Separable linkable threshold ring signatures, Progress in Cryptology—INDOCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3348 (2004), 384–398. doi: 10.1007/978-3-540-30556-9_30.  Google Scholar

[50]

B. Waters, Efficient identity-based encryption without random oracles, Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3494 (2005), 114–127. doi: 10.1007/11426639_7.  Google Scholar

[51]

D. S. Wong, K. Fung, J. K. Liu and V. K. Wei, On the RS-code construction of ring signature schemes and a threshold setting of RST, Information and Communications Security, (2003), 34–46. doi: 10.1007/978-3-540-39927-8_4.  Google Scholar

[52]

T. H. YuenJ. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Efficient linkable and/or threshold ring signature without random oracles, The Computer Journal, 56 (2013), 407-421.  doi: 10.1093/comjnl/bxs115.  Google Scholar

[53]

S. K. ZengS. Q. Jiang and Z. G. Qin, An efficient conditionally anonymous ring signature in the random oracle model, Theoretical Computer Science, 461 (2012), 106-114.  doi: 10.1016/j.tcs.2012.01.027.  Google Scholar

[54]

F. G. Zhang and K. Kim, ID-based blind signature and ring signature from pairings, Advances in Cryptology—ASIACRYPT 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 533–547. doi: 10.1007/3-540-36178-2_33.  Google Scholar

[55]

D. Zheng, X. X. Li, K. F. Chen and J. H. Li, Linkable ring signatures from linear feedback shift register, Emerging Directions in Embedded and Ubiquitous Computing, (2007), 716–727. doi: 10.1007/978-3-540-77090-9_66.  Google Scholar

show all references

References:
[1]

M. Abe, M. Ohkubo and K. Suzuki, 1-out-of-n signatures from a variety of keys, Advances in Cryptology—ASIACRYPT 2002, (2002), 415–432. doi: 10.1007/3-540-36178-2_26.  Google Scholar

[2]

M. AbeM. Ohkubo and K. Suzuki, Efficient threshold signer-ambiguous signatures from variety of keys, IEICE Trans 2004, 87 (2004), 471-479.   Google Scholar

[3]

M. H. Au, S. S. M. Chow, W. Susilo and P. P. Tsang, Short linkable ring signatures revisited, Public Key Infrastructure, (2006), 101–115. doi: 10.1007/11774716_9.  Google Scholar

[4]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction, Theoretical Computer Science, 469 (2013), 1-14.  doi: 10.1016/j.tcs.2012.10.031.  Google Scholar

[5]

M. H. AuJ. K. LiuW. Susilo and T. H. Yuen, Constant-size ID-based linkable and revocable-iff-linked ring signature, Progress in cryptology—INDOCRYPT 2006, 4329 (2006), 364-378.  doi: 10.1007/11941378_26.  Google Scholar

[6]

M. H. Au, J. K. Liu, T. H. Yuen and D. S. Wong, ID-based ring signature scheme secure in the standard model, Advances in Information and Computer Security, Lecture Notes in Comput. Sci., Springer, Berlin, 4266 (2006), 1–16. doi: 10.1007/11908739_1.  Google Scholar

[7]

P. S. L. M. Barreto, B. Libert, N. McCullagh and J.-J. Quisquater, Efficient and provably-secure identity-based signatures and signcryption from bilinear maps, Advances in Cryptology—ASIACRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3788 (2005), 515–532. doi: 10.1007/11593447_28.  Google Scholar

[8]

A. Bender, J. Katz and R. Morselli, Ring signatures: Stronger definitions, and constructions without random oracles, Theory of Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 3876 (2006), 60–79. doi: 10.1007/11681878_4.  Google Scholar

[9]

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 213–229. doi: 10.1007/3-540-44647-8_13.  Google Scholar

[10]

D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifieably encrypted signatures from bilinear maps, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 416–432. doi: 10.1007/3-540-39200-9_26.  Google Scholar

[11]

D. Boneh and M. Hanburg, Generalized identity based and broadcast encryption schemes, Advances in Cryptology—ASIACRYPT 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5350 (2008), 455–470. doi: 10.1007/978-3-540-89255-7_28.  Google Scholar

[12]

S. Brands, Untraceable off-line cash in wallet with observers, CRYPTO'93, 773 (1993), 302-318.   Google Scholar

[13]

E. Bresson, J. Stern and M. Szydlo, Threshold ring signatures and applications to ad-hoc groups, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 465–480. doi: 10.1007/3-540-45708-9_30.  Google Scholar

[14]

J. C. Cha and J. H. Cheon, An identity-based signature from gap Diffie-Hellman groups, Public Key Cryptography—PKC 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2567 (2002), 18–30. doi: 10.1007/3-540-36288-6_2.  Google Scholar

[15]

D. Chaum, Blind signatures for untraceable payments, Advances in Cryptology, 397 (1983), 199-203.  doi: 10.1007/978-1-4757-0602-4_18.  Google Scholar

[16]

D. Chaum, A. Fiat and M. Naor, Untraceable electronic cash, Advances in Cryptology—CRYPTO'88, (1988), 319–327. doi: 10.1007/0-387-34799-2_25.  Google Scholar

[17]

D. Chaum and T. P. Pedersen, Wallet databases with observers, In Ernest Brickell, Proceedings of Crypto 92, 0740 (1992), 89-105.   Google Scholar

[18]

D. Chaum and E. Van Heyst, Group signatures, Advances in Cryptology—EUROCRYPT'91, (1991), 257–265. doi: 10.1007/3-540-46416-6_22.  Google Scholar

[19]

B. Chevallier-Mames, An efficient CDH-based signature scheme with a tight security reduction, Advances in Cryptology—CRYPTO 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3621 (2005), 511–526. doi: 10.1007/11535218_31.  Google Scholar

[20]

S. S. M. Chow, J. K. Liu and D. S. Wong, Robust receipt-free election system with ballot secrecy and verifieability, NDSS 2008, (1993), 1–14. Google Scholar

[21]

S. S. M. ChowS. M. Yiu and L. C. K. Hui, Efficient identity based ring signature, ACNS 2005, 3531 (2005), 499-512.   Google Scholar

[22]

I. Damgøard, K. Dupont and M. Pedersen, Unclonable group identification, Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 4004 (2006), 555–572. doi: 10.1007/11761679_33.  Google Scholar

[23]

Y. Dodis, A. Kiayias, A. Nicolosi and V. Shoup, Anonymous identification in Ad hoc groups, Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3027 (2004), 609–626. doi: 10.1007/978-3-540-24676-3_36.  Google Scholar

[24]

K. EmuraA. Miyaji and K. Omote, An r-hiding revocable group signature scheme: Group signatures with the property of hiding the number of revoked users, Journal of Applied Mathematics, 2014 (2011), 1-14.   Google Scholar

[25]

E. Fujisaki, Sub-linear size traceable ring signatures without random oracles, Topics in Cryptology—CT-RSA 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6558 (2011), 393–415. doi: 10.1007/978-3-642-19074-2_25.  Google Scholar

[26]

E. Fujisaki and K. Suzuki, Traceable ring signature, Public Key Cryptography 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4450 (2007), 181–200. doi: 10.1007/978-3-540-71677-8_13.  Google Scholar

[27]

E.-J. Goh and S. Jarecki, A signature scheme as secure as the Diffie-Hellman problem, Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2656 (2003), 401–415. doi: 10.1007/3-540-39200-9_25.  Google Scholar

[28]

K. GuW. Jia and C. Jiang., Efficient and secure identity-based proxy signature in the standard modell, The Computer Journal, 58 (2015), 792-807.   Google Scholar

[29]

K. GuW. J. JiaG. J. Wang and S. Wen, Efficient and secure attribute-based signature for monotone predicates, Acta Informatica, 54 (2017), 521-541.  doi: 10.1007/s00236-016-0270-5.  Google Scholar

[30]

K. GuW. J. Jia and J. M. Zhang, Identity-based multi-proxy signature scheme in the standard model, Fundamenta Informaticae, 150 (2017), 179-210.  doi: 10.3233/FI-2017-1464.  Google Scholar

[31]

F. Hess, Efficient identity based signature schemes based on pairings, Selected Areas in Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 2595 (2003), 310–324. doi: 10.1007/3-540-36492-7_20.  Google Scholar

[32]

L. Ibraimi, S. I. Nikova, P. H. Hartel and W. Jonker, An identity-based group signature with membership revocation in the standard model, Faculty of Electrical Engineering, Mathematics & Computer Science, Available from: http:/doc.utwente.nl/72270/1/Paper.pdf. Google Scholar

[33]

M. Jakobsson and C. P. Schnorr, Efficient oblivious proofs of correct exponentiation, Proceedings of the IFIP Conference on Communications and Multimedia Security 99, 152 (1999), 71-86.  doi: 10.1007/978-0-387-35568-9_5.  Google Scholar

[34]

I. R. JeongJ. O. Kwon and D. H. Lee, Analysis of revocable-iff-linked ring signature scheme, IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 92 (2009), 322-325.  doi: 10.1587/transfun.E92.A.322.  Google Scholar

[35]

Y. Komano, K. Ohta, A. Shimbo and S. Kawamura, Toward the fair anonymous signatures: Deniable ring signatures, Topics in Cryptology—CT-RSA 2006, Lecture Notes in Comput. Sci., Springer, Berlin, 3860 (2006), 174–191. doi: 10.1007/11605805_12.  Google Scholar

[36]

F. Laguillaumie and D. Vergnaud, Multi-designated verifiers signatures, Information and Communications Security, (2004), 495–507. doi: 10.1007/978-3-540-30191-2_38.  Google Scholar

[37]

J. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Linkable ring signature with unconditional anonymity, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 157-165.  doi: 10.1109/TKDE.2013.17.  Google Scholar

[38]

D. Y. W. LiuJ. K. LiuY. MuW. Susilo and D. S. Wong, Revocable ring signature, J. Comput. Sci. Tech., 22 (2007), 785-794.  doi: 10.1007/s11390-007-9096-5.  Google Scholar

[39]

J. K. Liu, V. K. Wei and D. S. Wong, Linkable spontaneous anonymous group signature for ad hoc groups, Information Security and Privacy, (2004), 325–335. doi: 10.1007/978-3-540-27800-9_28.  Google Scholar

[40]

J. K. Liu and D. S. Wong, Linkable ring signatures: Security models and new schemes, Computational Science and Its Applications—ICCSA 2005, (2005), 614–623. doi: 10.1007/11424826_65.  Google Scholar

[41]

J. K. Liu and D. S. Wong, Enhanced security models and a generic construction approach for linkable ring signature, Int. J. Found.Computt. Sci., 17 (2006), 1403-1422.  doi: 10.1142/S0129054106004480.  Google Scholar

[42]

M. Naor, Deniable ring authentication, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 481–498. doi: 10.1007/3-540-45708-9_31.  Google Scholar

[43]

T. Okamoto and K. Ohta, Universal electronic cash, Advances in Cryptology—CRYPTO'91, 403 (1991), 324-337.  doi: 10.1007/3-540-46766-1_27.  Google Scholar

[44]

K. G. Paterson and J. C. N. Schuldt, Efficient identity-based signatures secure in the standard model, A Information Security and Privacy, (2006), 207–222. doi: 10.1007/11780656_18.  Google Scholar

[45]

R. L. Rivest, A. Shamir and Y. Tauman, How to leak a secret, Advances in Cryptology—ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., Springer, Berlin, 2248 (2001), 552–565. doi: 10.1007/3-540-45682-1_32.  Google Scholar

[46]

A. Shamir and Y. Tauman, Improved online/offline signature scheme, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 355–367. doi: 10.1007/3-540-44647-8_21.  Google Scholar

[47]

W. Susilo and Y. Mu, Non-interactive deniable ring authentication, Information Security and Cryptology—ICISC, Lecture Notes in Comput. Sci., Springer, Berlin, 2971 (2004), 386–401. doi: 10.1007/978-3-540-24691-6_29.  Google Scholar

[48]

P. P. Tsang and V. K. Wei, Short linkable ring signatures for e-voting, e-cash and attestation, Information Security Practice and Experience, (2005), 48–60. doi: 10.1007/978-3-540-31979-5_5.  Google Scholar

[49]

P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu and D. S. Wong, Separable linkable threshold ring signatures, Progress in Cryptology—INDOCRYPT 2004, Lecture Notes in Comput. Sci., Springer, Berlin, 3348 (2004), 384–398. doi: 10.1007/978-3-540-30556-9_30.  Google Scholar

[50]

B. Waters, Efficient identity-based encryption without random oracles, Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3494 (2005), 114–127. doi: 10.1007/11426639_7.  Google Scholar

[51]

D. S. Wong, K. Fung, J. K. Liu and V. K. Wei, On the RS-code construction of ring signature schemes and a threshold setting of RST, Information and Communications Security, (2003), 34–46. doi: 10.1007/978-3-540-39927-8_4.  Google Scholar

[52]

T. H. YuenJ. K. LiuM. H. AuW. Susilo and J. Y. Zhou, Efficient linkable and/or threshold ring signature without random oracles, The Computer Journal, 56 (2013), 407-421.  doi: 10.1093/comjnl/bxs115.  Google Scholar

[53]

S. K. ZengS. Q. Jiang and Z. G. Qin, An efficient conditionally anonymous ring signature in the random oracle model, Theoretical Computer Science, 461 (2012), 106-114.  doi: 10.1016/j.tcs.2012.01.027.  Google Scholar

[54]

F. G. Zhang and K. Kim, ID-based blind signature and ring signature from pairings, Advances in Cryptology—ASIACRYPT 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 533–547. doi: 10.1007/3-540-36178-2_33.  Google Scholar

[55]

D. Zheng, X. X. Li, K. F. Chen and J. H. Li, Linkable ring signatures from linear feedback shift register, Emerging Directions in Embedded and Ubiquitous Computing, (2007), 716–727. doi: 10.1007/978-3-540-77090-9_66.  Google Scholar

Table 1.  Performance comparisons of the Six Schemes
Signature Size Signing Cost Verification Cost
Scheme [40] $ O(n) $ $ (4\cdot n+3)\cdot e_1+2\cdot n\cdot m_1 $ $ 4\cdot n\cdot e_1+n\cdot m_1 $
Scheme [55] $ O(n) $ $ (28\cdot n+9)\cdot m_3+(22\cdot n+14)\cdot a $ $ 28\cdot n\cdot m_3+19\cdot n\cdot a $
Scheme [25] $ O(\sqrt{n}) $ $ (n+9)\cdot e_1+(n+2)\cdot m_1 $ $ (2\cdot n+3)\cdot e_1+2\cdot n\cdot m_1+9\cdot p $
Scheme [26] $ O(n) $ $ (5\cdot n-1)e_1+(3\cdot n-2)\cdot m_1 $ $ 5\cdot n\cdot e_1+3\cdot n\cdot m_1 $
Scheme [4] $ O(1) $ $ 7\cdot e_1+7\cdot m_1 $ $ 9\cdot e_1+5\cdot m_1+7\cdot e_2+8\cdot m_2+12\cdot p $
Our Scheme $ O(1) $ $ 5\cdot e_1+(n+1)\cdot m_1 $ $ 4\cdot e_1+(n+3)\cdot m_1 $
Signature Size Signing Cost Verification Cost
Scheme [40] $ O(n) $ $ (4\cdot n+3)\cdot e_1+2\cdot n\cdot m_1 $ $ 4\cdot n\cdot e_1+n\cdot m_1 $
Scheme [55] $ O(n) $ $ (28\cdot n+9)\cdot m_3+(22\cdot n+14)\cdot a $ $ 28\cdot n\cdot m_3+19\cdot n\cdot a $
Scheme [25] $ O(\sqrt{n}) $ $ (n+9)\cdot e_1+(n+2)\cdot m_1 $ $ (2\cdot n+3)\cdot e_1+2\cdot n\cdot m_1+9\cdot p $
Scheme [26] $ O(n) $ $ (5\cdot n-1)e_1+(3\cdot n-2)\cdot m_1 $ $ 5\cdot n\cdot e_1+3\cdot n\cdot m_1 $
Scheme [4] $ O(1) $ $ 7\cdot e_1+7\cdot m_1 $ $ 9\cdot e_1+5\cdot m_1+7\cdot e_2+8\cdot m_2+12\cdot p $
Our Scheme $ O(1) $ $ 5\cdot e_1+(n+1)\cdot m_1 $ $ 4\cdot e_1+(n+3)\cdot m_1 $
Table 2.  Other comparisons of the Six Schemes
Cryptography Traceability Model
Scheme [40] Public Key No random oracle
Scheme [55] Public Key No random oracle
Scheme [25] Public Key Yes without random oracle
Scheme [26] Public Key Yes random oracle
Scheme [4] Identity-Based Yes random oracle
Our Scheme Public Key Yes random oracle
Cryptography Traceability Model
Scheme [40] Public Key No random oracle
Scheme [55] Public Key No random oracle
Scheme [25] Public Key Yes without random oracle
Scheme [26] Public Key Yes random oracle
Scheme [4] Identity-Based Yes random oracle
Our Scheme Public Key Yes random oracle
[1]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[2]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[5]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[6]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[7]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[8]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[9]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[10]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[11]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[12]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[13]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[14]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[15]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[16]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[19]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[20]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (507)
  • HTML views (507)
  • Cited by (10)

Other articles
by authors

[Back to Top]